- Anderson, M. P., Woessner, W. W., & Hunt, R. J. (1992). Applied groundwater modeling: Simulation of flow and advective transport. Journal of Hydrology, 140, 393–395.
- Ayaz, M., Srivastava, R., & Jain, A. (2014). Groundwater pollution source identification using linked ANN-optimization model, in: EGU General Assembly Conference Abstracts, 27 April, Vienna, Austria, id. 830.
- Ayvaz, M. T. (2010). A linked simulation–optimization model for solving the unknown groundwater pollution source identification problems. Journal of Contaminant Hydrology, 117(1-4), 46–59.
- Barron, A. R., & Xiao, X. (1991). Discussion: multivariate adaptive regression splines. Annals of Statistics, 19(1), 67–82.
- Bear, J., & Verruijt, A. (1987). Modeling groundwater flow and pollution. Dordrecht, Netherlands, Reidel Publ.
- Behzadian, K., Kapelan, Z., Savic, D., & Ardeshir, A. (2009). Environmental modelling & software stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environmental Modeling & Software, 24(4), 530–541.
- Boano, F., Revelli, R., & Ridolfi, L. (2005). Source identification in river pollution problems : A geostatistical approach. Water Resources Research, 41(7), 1-13.
- Borah, T., & Bhattacharjya, R. K. (2015). Development of Unknown Pollution Source Identification Models Using GMS ANN–Based Simulation Optimization Methodology. Journal of Hazardous, Toxic, and Radioactive Waste, 19(3), 4014034.
- Butera, I., Tanda, M. G., & Zanini, A. (2013). Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27(5), 1269–1280.
- Butera, I., Tanda, M. G., & Zanini, A. (2006). Use of numerical modelling to identify the transfer function and application to the geostatistical procedure in the solution of inverse problems in groundwater. Journal of Inverse and Ill-posed Problems, 14(6), 547–572.
- Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear programming. Aociety for Industrial and Applied Mathematics Journal on Optimization, 9(4), 877–900.
- Fen, C., Chan, C., & Cheng, H. (2009). Assessing a response surface-based optimization approach for soil vapor extraction system design. Journal of Water Resources Planning and Management, 135(3), 198.
- Guo, J. Y., Lu, W. X., Yang, Q. C., & Miao, T. S. (2019). The application of 0–1 mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source. Journal of Contaminant Hydrology, 220, 18-25.
- Hazrati-yadkoori, S., & Datta, B. (2017a). Self-organizing map based surrogate models for contaminant source identification under parameter uncertainty. International Journal of GEOMATE, 13(36), 10–18.
- Hazrati-yadkoori, S., & Datta, B. (2017b). Adaptive surrogate model based optimization (ASMBO) for unknown groundwater contaminant source characterizations using self-organizing maps. Journal of Water Resource and Protection, 9(2), 193–214.
- Jamshidi, A., Samani, J. M. V., Samani, H. M. V., Zanini, A., Tanda, M. G., & Mazaheri, M. (2020). Solving inverse problems of unknown contaminant source in groundwater-river integrated systems using a surrogate transport model based 17. optimization. Water, 12(9), 2415.
-
Mekonnen, M. M., & Gerbens-Leenes, W. (2020). The water footprint of global food production. Water, 12(10), 2696.
- Mekonnen, M.M., & Hoekstra, A.Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401-415.
- Mohammadi, A., Yousefi, H., Noorollahi, Y., & Sadatinejad, S. (2017). Choosing the best province in potato production using water footprint assessment. Iranian journal of Ecohydrology, 4(2), 523-532. (in Persian)
- Nouri, H., Stokvis, B., Galindo, A., Blatchford, M., & Hoekstra, A. Y. (2019). Water scarcity alleviation through water footprint reduction in agriculture: the effect of soil mulching and drip irrigation. Science of the total environment, 653, 241-252.
- Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992.
- Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., ... & van Ittersum, M. K. (2020). Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems, 183, 102859.
- Stocker, T. F., Qin, D., Plattner, G. K., Alexander, L. V., Allen, S. K., Bindoff, N. L., ... & Xie, S. P. (2013). Technical summary. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(pp. 33-115). Cambridge University Press.
- Weidema, B. P., Bauer, C., Hischier, R., Mutel, C. L., Nemecek, T., Reinhard, J., ... & Wernet, G. (2013). Data quality guidelines for the ecoinvent database version 3: Overview and methodology (final).
- West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 91(1-3), 217-232.
- Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., ... & Murray, C. J. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447-492.
- WWAP (United Nations World Water Assessment Programme). (2014). The United Nations World Water Development Report 2014: Water and Energy. Paris, UNESCO.
- Xie, H., Wang, L., & Chen, X. (2008). Improvement and application of ecological footprint model.
- Xiong, X., Zhang, L., Hao, Y., Zhang, P., Chang, Y., & Liu, G. (2020). Urban dietary changes and linked carbon footprint in China: a case study of Beijing. Journal of environmental management, 255, 109877.
- Yang, S.H., (1996). The research of City Trees effects of carbon and oxygen balance. City Environment & Ecology, 9(001), 37-39. (In Chinese)
- Yousefi, H., Mohammadi, A., Noorollahi, Y., & Sadatinejad, S. (2018). Water footprint evaluation of Tehran’s crops and garden crops. Journal of Water and Soil Conservation, 24(6), 67-85. (In Persian)
- Yuan, Q., Song, G., Fullana-i-Palmer, P., Wang, Y., Semakula, H. M., Mekonnen, M. M., & Zhang, S. (2017). Water footprint of feed required by farmed fish in China based on a Monte Carlo-supported von Bertalanffy growth model: A policy implication. Journal of Cleaner Production, 153, 41-50.
|