- Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4(6), 1147–1167.
- AghaKouchak(a), A., Bárdossy, A., & Habib, E. (2010). Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Advances in Water Resources, 33(6), 624–634.
- Aghakouchak(b), A., Habib, E., & Bárdossy, A. (2010). A comparison of three remotely sensed rainfall ensemble generators. Atmospheric Research, 98(2–4), 387–399.
- Al-Kharabsheh, A., & Al-Mahamid, J. (2002). Optimizing pumping rates of Hallabat-Khalidiya Wellfield using finite-difference model: a case study for evaluating overpumped aquifers in arid areas (Jordan). Journal of Arid Environments, 52(2), 259–267.
- Ansari,H, Naderianfar,M,. (2012). Evaluating the groundwater fluctuations with fuzzy Standardized Evapoprecipitation Index (SEPI). Water and Irrigation Management, Vol. 2, No. 1, Spring 2012, 2(1), 41-54.
- Anderson, M. P., & Woessner, W. W. (1992). The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167–173.
- Bellerby, T. J., & Sun, J. (2005). Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. Journal of Hydrometeorology, 6(6), 1032–1044.
- Chebana, F., & Ouarda, T. B. M. J. (2009). Index flood-based multivariate regional frequency analysis. Water Resources Research, 45(10), 5-10.
- Chen, L., Singh, V. P., Shenglian, G., Hao, Z., & Li, T. (2012). Flood Coincidence Risk Analysis Using Multivariate Copula Functions. Journal of Hydrologic Engineering, 17(6), 742–755.
- Chiang, W.-H. (2005). 3D-Groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and transport processes. Verlag Berlin Heidelberg. Springer Science & Business Media.
- Csáfordi, P., Szabó, A., Balog, K., Gribovszki, Z., Bidló, A., & Tóth, T. (2017). Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach. Environmental Earth Sciences, 76(20), 7-13.
- De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50–57.
- Gehrels, J. C., van Geer, F. C., & de Vries, J. J. (1994). Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones. Journal of Hydrology, 157(1–4), 105–138.
- Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43(9), 3-5.
- Hong, Y., Chen, S., Xue, X., & Hodges, G. (2012). Global precipitation estimation and applications. Multiscale Hydrologic Remote Sensing: Perspectives and Applications, 1, 371–386.
- Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722.
- Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., & Wolff, D. B. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.
- Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., & Ma, M. (2012). Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. Journal of Hydrology, 452, 213–225.
- Kao, S. C., & Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), 3-8.
- König, L. F., & Weiss, J. L. (2009). Groundwater: modelling, management and contamination. UK. Nova Science Publishers.
- Moazami, S., Golian, S., Kavianpour, M. R., & Hong, Y. (2014). Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmospheric Research, 137, 145–166.
- Nelsen, R. B. (2006). Springer. Notes in Statist. In An introduction to copulas (p. 139). New York, NY.Lect
- Prabaharan, S. (2011). Geo Statistical Modelling for Groundwater Pollution in Salem , Tamilnadu- a Gis Based Approach. International Journal of Engineering Science and Technology (IJEST), 3(2), 1273–1278.
- Rowe, K., & Davis, J. M. (1997). Error analysis of parameters determined with statistical models of overlap from nonhomogeneous separations. Chemometrics and Intelligent Laboratory Systems, 38(2), 109–126.
- Serinaldi, F. (2009). A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. Journal of Geophysical Research, 114(D10), D10103.
- Shiau, J.-T., Wang, H.-Y., & Tsai, C.-T. (2006). BIVARIATE FREQUENCY ANALYSIS OF FLOODS USING COPULAS 1. Journal of the American Water Resources Association, 42(6), 1549–1564.
- Sklar, A. (1959). Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229–231.
- Song, S., & Singh, V. P. (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24(5), 783–805.
- Sushant, S., Balasubramani, K., & Kumaraswamy, K. (2015). Spatio-temporal Analysis of Rainfall Distribution and Variability in the Twentieth Century, Over the Cauvery Basin, South India. 21–41.
- Trivedi, P. K., & Zimmer, D. M. (2007). Copula modeling: an introduction for practitioners. Indiana University. Now Publishers Inc.
- Venkatesan, G., Subramani, T., Karunanidhi, D., Sathya, U., & Li, P. (2021). Impact of precipitation disparity on groundwater fluctuation in a semi-arid region ( Vellore district ) of southern India using geospatial techniques. Environmental Science and Pollution Research, 28(15), 18539-18551
- Wong, G., Lambert, M. F., & Metcalfe, A. V. (2008). Trivariate copulas for characterisation of droughts. In G. N. Mercer & A. J. Roberts (Eds.), Proceedings of the 8th Biennial Engineering Mathematics and Applications Conference, EMAC-2007 (C306--C323).
- Xie, Y., Cook, P. G., Simmons, C. T., Partington, D., Crosbie, R., & Batelaan, O. (2018). Uncertainty of groundwater recharge estimated from a water and energy balance model. Journal of Hydrology, 561, 1081–1093.
- Xue, X., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I., Dorji, C., & Chen, S. (2013). Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499, 91–99.
- Zekri, S., Triki, C., Al-Maktoumi, A., & Bazargan-Lari, M. R. (2015). An optimization-simulation approach for groundwater abstraction under recharge uncertainty. Water Resources Management, 29(10), 3681–3695.
- Zhang, Q., Li, J., Singh, V. P., & Xu, C.-Y. (2013). Copula-based spatio-temporal patterns of precipitation extremes in China. International Journal of Climatology, 33(5), 1140–1152.
|