
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,180,369 |
تعداد دریافت فایل اصل مقاله | 102,008,343 |
برآورد پارامتر شدت زلزله در منطقة گسل با استفاده از داده های حرارتی سنجش از دور | ||
پژوهش های جغرافیای طبیعی | ||
دوره 53، شماره 3، آبان 1400، صفحه 381-395 اصل مقاله (651.57 K) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2021.323677.1007617 | ||
نویسندگان | ||
آرش کریمی زارچی1؛ محمدرضا سراجیان* 2 | ||
1دانشکدة مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران | ||
2دانشکدة مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران | ||
چکیده | ||
زلزله یکی از پیش بینی ناپذیرترین و خطرناک ترین پدیده های طبیعی است که هرساله خسارات مالی و جانی فراوانی را باعث می شود. هنگام وقوع زلزله تنش ها و فعالیت های محدودة گسل افزایش می یابد و باعث تغییرات دمایی محسوسی نسبت به دمای نرمال می شود. این تغییرات دمایی خود را به صورت بی هنجاری هایی در مکان یا زمان نشان می دهند. در این تحقیق با استفاده از محصولات حرارتی سنجندة مادیس و شیپ فایل گسل های ایران، هفت زلزله با شدت بیشتر از شش ریشتر، که در ایران رخ داده، بررسی شده است. در این پژوهش با استفاده از تشکیل تصویر زمان- دما- فاصله در گسل مربوط به زلزله به عنوان ورودی دو روش تشخیص بی هنجاری حرارتی روی داده ها بررسی شده است. در نهایت، با استفاده از نتایج حاصل از بهترین روش تشخیص بیهنجاری پارامتر شدت با استفاده از شبکة عصبی مصنوعی برآورد شده است. نتایج الگوریتم های تشخیص ناهنجاری نشان می دهد هرچند هر دو روش تشخیص بی هنجاری حرارتی بی هنجاری حرارتی مربوط به هر زلزله را در روز زلزله در شعاع نزدیک به گسل شناسایی کردهاند روش چارکی (Interquartile) نسبت به روش میانگین- انحراف معیار نتایج مناسب تری را برای ورودی الگوریتم شبکة عصبی فراهم می کند. نتایج در مدل سازی نیز نشان می دهد پارامتر شدت زلزله، که با استفاده از شبکة عصبی مصنوعی بررسی شد، دقت کلی 73/0 را داشته است. ذکر این نکته لازم است که پیش نشانگر تغییرات دمای سطح و بی هنجاری های حرارتی به تنهایی نمی تواند برای بررسی کامل پارامترهای زلزله کافی و دقت لازم را برای تحلیل زلزله داشته باشد. ولی با توجه به حجم پایین داده های حرارتی و سادگی کار با آنها، توصیه می شود از آنها برای بررسی های ابتدایی و آغازین زمین لرزه استفاده شود و در صورت تأیید نسبی آن برای تحلیلهای بیشتر، از روشها و پیش نشانگرهای دیگر، که در آنها اعمال الگوریتم ها و پردازش های سنگین و پیچیده نیاز است، استفاده شود. | ||
کلیدواژهها | ||
پیش نشانگر زلزله؛ گسل فعال؛ مدل سازی شبکة عصبی مصنوعی؛ ناهنجاری حرارتی | ||
مراجع | ||
Akhoondzadeh, M. (2012). Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011, Natural Hazards and Earth System Sciences, vol. 12, no. 5, p. 1453.
Akhoondzadeh, M. (2014). Thermal and TEC anomalies detection using an intelligent hybrid system around the time of the Saravan, Iran,(Mw= 7.7) earthquake of 16 April 2013, Advances in Space Research, vol. 53, no. 4, pp. 647-655.
Asiltürk, I. and Çunkaş, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method, Expert systems with applications, vol. 38, no. 5, pp. 5826-5832.
Belayneh, A.; Adamowski, J.; Khalil, B. and Ozga-Zielinski, B. (2014). Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models, Journal of Hydrology, vol. 508, pp. 418-429.
Console, R.; Pantosti, D. and D'Addezio, G. (2002). Probabilistic approach to earthquake prediction, Annals of Geophysics, vol. 45, no. 6.
Freund, F. et al. (2005). Enhanced mid-infrared emission from igneous rocks under stress, 2005, in Geophys Res Abstr, vol. 7, p. 09568.
Geller, R. J.; Jackson, D. D.; Kagan, Y. Y. and Mulargia, F. (1997). Earthquakes cannot be predicted, Science, vol. 275, no. 5306, pp. 1616-1616.
Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems, Artificial Intelligence in Engineering, vol. 9, no. 3, pp. 143-151.
Marano, K. D.; D. J. Wald, and Allen, T. I. (2010). Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses, Natural hazards, vol. 5, no. 2, pp. 319-328.
Miikkulainen, R. (2010). Topology of a neural network, Encyclopedia of Machine Learning, pp. 988-989.
Nedic, V.; Despotovic, D.; Cvetanovic, S.; Despotovic, M. and Babic, S. (2014). Comparison of classical statistical methods and artificial neural network in traffic noise prediction, Environmental Impact Assessment Review, no.49, pp. 24-30.
Nekoee, M. and Shah-Hosseini, R. (2020). Thermal anomaly detection using NARX neural network method to estimate the earthquake occurrence time. Earth Observation and Geomatics Engineering, 4(2): 98-108.
Ouzounov, D. and Freund, F. (2004). Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Advances in space research, vol. 33, no. 3, pp. 268-273.
Park, D. C.; El-Sharkawi, M.; Marks, R.; Atlas, L. and Damborg, M. (1991). Electric load forecasting using an artificial neural network, IEEE transactions on Power Systems, vol. 6, no. 2, pp. 442-449.
Qiang, Z.-j.; X.-d. Xu and Dian, C.-g. (1997). Case 27 thermal infrared anomaly precursor of impending earthquakes, Pure and Applied Geophysics, vol. 149, no. 1, pp. 159-171.
Qiang, Z. et al. (1999). Atellitic thermal infrared brightness temperature anomaly image-short-term and impending earthquake precursors, Science in China series D: Earth Sciences, vol. 42, no. 3, pp. 313-324.
Sahoo, S.; Dhar, A. and Kar, A. (2016). Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model, Environmental Impact Assessment Review, no. 56, pp. 145-154.
Saradjian, M. R. and Akhoondzadeh, M. (2001). Thermal anomalies detection before strong earthquakes (M> 6.0) using interquartile, wavelet and Kalman filter methods, Natural Hazards and Earth System Sciences, vol. 11, no. 4, p. 1099.
Saraf, A. K.; Rawat, V.; Choudhury, S.; Dasgupta, S. and Das, J. (2009). Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites, International Journal of Applied Earth Observation and Geoinformation, vol. 11, no. 6, pp. 373-379.
Saraf, A. K. et al. (2008). Satellite detection of earthquake thermal infrared precursors in Iran, Natural Hazards, vol. 47, no. 1, pp. 119-135.
Tramutoli, V. (1998). Robust AVHRR Techniques (RAT) for environmental monitoring: theory and applications, in Earth surface remote sensing II, vol. 3496, pp. 101-113: International Society for Optics and Photonics.
Wyss, M. (1991). Evaluation of proposed earthquake precursors, Eos, Transactions American Geophysical Union, vol. 72, no. 38, pp. 411-411. | ||
آمار تعداد مشاهده مقاله: 708 تعداد دریافت فایل اصل مقاله: 460 |