تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,031 |
تعداد مشاهده مقاله | 125,501,135 |
تعداد دریافت فایل اصل مقاله | 98,764,434 |
بررسی کارایی روشهای بازسازی نواقص آماری در رابطه با پارامتر بارش در مناطق خشک ایران | ||
فیزیک زمین و فضا | ||
مقاله 8، دوره 47، شماره 2، مرداد 1400، صفحه 315-332 اصل مقاله (1.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2021.314958.1007269 | ||
نویسندگان | ||
محمدرضا کوثری* 1؛ میترا السادات اسمعیلزاده حسینی2؛ مرتضی میری1 | ||
1استادیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
2دانشجوی دکتری، گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران | ||
چکیده | ||
نواقص آماری عاملی رایج در دادههای اقلیمی هستند و برای تخمین آنها تا بهحال روشهای متنوعی توسعه یافتهاند. در این میان، روشهای نسبتنرمال، رگرسیون خطی، رگرسیون چندمتغیره و عکس مجذور فاصله یا IDW از کاربرد گستردهای در مطالعات منابع طبیعی کشور ما برخوردار هستند. در پژوهش حاضر، قابلیت هر یک از روشهای مذکور در بازسازی نواقص آماری بارش روزانه، ماهانه و سالانه مناطق خشک کشور متناسب با میزان نسبت نقص داده از 5 درصد تا 50 درصد دادهها موردارزیابی قرارگرفت. نتایج نشان داد که هر روش متناسب با شرایط میزان دادههای گمشده از عملکرد متفاوتی برخوردار است. روش رگرسیون چند متغیره هنگامی که نقص دادهها زیاد نباشد از دقت بیشتری در بازسازی دادههای روزانه برخوردار است ولی در کل به میزان نسبت دادههای گمشده حساس میباشد. روش نسبتنرمال در بازسازی نواقص بارش روزانه مناسب نیست ولی نسبت به میزان نقص دادهها از سایر روشها پایدارتر است. در سریهای زمانی ماهانه عملکرد IDW و سپس نسبت نرمال مناسب است. در سریهای سالانه بهترتیب، روش همبستگی خطی، نسبتنرمال و IDW عمکرد بهتری دارند. در کل هر روش متناسب با شرایط بایستی مورد استفاده قرارگیرد و پیشنهاد میشود برای بازسازی نواقص آماری، یک بسته نرمافزاری برای کل کشور ارائه شود. | ||
کلیدواژهها | ||
نقص داده؛ نسبت نرمال؛ همبستگی خطی؛ بازسازی؛ بارش | ||
مراجع | ||
رضازاده جودی.، ع. و ستاری، م. ت.، ۱۳۹۵، ارزیابی عملکرد روشهای مختلف در بازسازی دادههای بارش. تحقیقات کاربردی علوم جغرافیایی، (۱۶)۴۲، ۱۷۶-۱۵۵.
ساداتی نژاد، ج.، 1376، مقایسه آماری و روشهای مختلف بازسازی دادههای بارش در استان اصفهان. پایان نامه ارشد، دانشگاه تربیت مدرس.
علیزاده، ا.، 1392، اصول هیدرولوژی کاربردی. چاپ 36، دانشگاه امام رضا.
مهدوی، م.، 1384، هیدرلوژی کاربردی. جلد اول، انتشارات دانشگاه تهران.
رضیئی، ط.، 1396، چشماندازی از مناطق اقلیمی ایران به روش کوپن-گایگر در سده بیست و یکم، م. فیزیک زمین و فضا، (2)43، 419-439.
Abebe, A. J., Solomatine, D. P. and Venneker, R. G. W., 2000, Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrological Sciences Journal, 45, 425–436. Ahani, H., Kherad, M., Kousari, M., Rezaeian-Zadeh, M., Karampour, M., Ejraee, F. and Kamali, S., 2012, An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theoretical and Applied Climatology, 109, 361-382. doi: 10.1007/s00704-0-572-11z. Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J. and Hoell, A., 2016, A Review of Drought in the Middle East and Southwest Asia. Journal of Climate, 29, 8547-8574. doi: 10.1175/jcli-d-13-00692.1. Barrios, A., Trincado, G. and Garreaud, R., 2018, Alternative approaches for estimating missing climate data: application to monthly precipitation records in South-Central Chile. Forest Ecosystems, 5, 28. doi: 10.1186/s40663-018-0147-x. Canchala-Nastar, T., Carvajal-Escobar, Y., Alfonso-Morales, W., Loaiza Cerón, W. and Caicedo, E., 2019, Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural network Data in Brief 26, 104517. doi: https://doi.org/10.1016/j.dib.2019.104517. De Martonne, E., 1925, Traité de Géographie Physique Quatrième édition. Paris: A. Colin. Foehn, A., García Hernández, J., Schaefli, B. and Cesare, G., 2018, Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. Journal of Hydrology, 563, 1092-1110. doi: https://doi.org/10.1016/j.jhydrol.2018.05.027. Hasanpour Kashani, M. and Dinpashoh, Y., 2012, Evaluation of efficiency of different estimation methods for missing climatological data. Stochastic Environmental Research and Risk Assessment, 26, 59-71. doi: 10.1007/s00477-011-0536-y. Hu, M. and Huang, Y., 2020, atakrig: An R package for multivariate area-to-area and area-to-point kriging predictions. Computers & Geosciences, 139, 104471. doi: https://doi.org/10.1016/j.cageo.2020.104471. Kamwaga, S., Mulungu, D. M. M. and Valimba, P., 2018, Assessment of empirical and regression methods for infilling missing streamflow data in Little Ruaha catchment Tanzania. Physics and Chemistry of the Earth, Parts A/B/C , 106, 17-28. doi: https://doi.org/10.1016/j.pce.2018.05.008. Kim, J.-W. and Pachepsky, Y. A., 2010, Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology, 394, 305-314. doi: https://doi.org/10.1016/j.jhydrol.2010.09.005. Lebrenz, H., Bárdossy, A. and Pavia Santolamazza, D., 2016, Reconstruction of missing precipitation data. Paper presented at the EGU General Assembly, Vienna. Lo Presti, R., Barca, E. and Passarella, G., 2008, A methodology for treating missing data applied to daily rainfall data in the Candelaro River Basin (Italy). Environmental Monitoring and Assessment, 160, doi: 10.1007/s10661-008-0653-3. Miri, M., Masoudi, R. and Raziei, T., 2019, Performance Evaluation of Three Satellites-Based Precipitation Data Sets Over Iran, Journal of the Indian Society of Remote Sensing, 47, pages2073–2084. Rees, G., 2008, Hydrological Data. In: Gustard, Alan; Demuth, Siegfried, (eds.). Manual on Low-flow Estimation and Prediction Operational Hydrology Report, World Meteorological Organization,50, 22-35. Sattari, M.-T., Rezazadeh-Joudi, A. and Kusiak, A., 2016, Assessment of different methods for estimation of missing data in precipitation studies. Hydrology Research, 48(4), 1032-1044. doi: 10.2166/nh.2016.364. Serrano-Notivoli, R., de Luis, M. and Beguería, S., 2017, An R package for daily precipitation climate series reconstruction. Environmental Modelling & Software, 89, 190-195. doi: https://doi.org/10.1016/j.envsoft.2016.11.005. Shtiliyanova, A., Bellocchi, G., Borras, D., Eza, U., Martin, R. and Carrère, P., 2017, Kriging-based approach to predict missing air temperature data. Computers and Electronics in Agriculture, 142, 440-449. doi: https://doi.org/10.1016/j.compag.2017.09.033. Teegavarapu, R. S. V., 2020, Precipitation imputation with probability space-based weighting methods. Journal of Hydrology, 581, 124447. doi: https://doi.org/10.1016/j.jhydrol.2019.124447. Teegavarapu, R. S. V., Aly, A., Pathak, C. S., Ahlquist, J., Fuelberg, H. and Hood, J., 2018, Infilling missing precipitation records using variants of spatial interpolation and data-driven methods: use of optimal weighting parameters and nearest neighbour-based corrections. International Journal of Climatology, 38, 776-793. doi: 10.1002/joc.5209. | ||
آمار تعداد مشاهده مقاله: 1,320 تعداد دریافت فایل اصل مقاله: 726 |