تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,107,051 |
تعداد دریافت فایل اصل مقاله | 97,212,034 |
پریفایتون و نقش کلیدی آن در شالیزار ها و سلامت محیط زیست | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 2، اردیبهشت 1400، صفحه 451-467 اصل مقاله (1.2 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2021.315436.668835 | ||
نویسندگان | ||
حسینعلی علیخانی* 1؛ سمیه امامی2؛ حسن اعتصامی3 | ||
1استاد، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
2محقق پسا دکتری، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
3استادیار، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
چکیده | ||
بیوفیلمهای پریفایتیک و یا پریفایتون، میکروبیومهایی متشکل از یک ماتریکس پیچیده شامل انواع اتوتروف و هتروتروف از جمله انواع مختلف جلبک، باکتری، قارچ، پروتوزوئرها، و متازوآ میباشند. بیوفیلمهای (پرههای زیستی) پریفایتیک معمولاً در بسیاری از اکوسیستمهای آبی مانند دریا، دریاچهها، رودخانهها، نهرها، برکهها و طی گزارشهای سالهای اخیر در شالیزارها حضور داشته و نقش مهمی در تولیدات اولیه، تعاملات شبکه غذایی همچون چرخه کربن، فسفر و برخی دیگر از عناصر غذایی ایفا میکنند. بیوفیلمهای پریفایتیک به تغییرات محیطی بویژه مواد مغذی و نور به سرعت پاسخ میدهند و میتوانند به عنوان شاخصی از وجود اختلالات و شرایط نامساعد در اکوسیستمهای آبی استفاده شوند. در سالهای اخیر، علایق تحقیقاتی در زمینه استفاده از پریفایتون در کنترل منابع آلودگی غیر نقطهای (فراگیر)، تصفیه آبهای آلوده و تداخل در وضعیت عناصر غذایی افزایش یافته است. اگرچه اثرات پریفایتون بر کیفیت آب و ارتباط آن با جریانهای آبی توسط محققان بررسی شده است، اما درک ما در مورد عملکرد آنها در شالیزارها و تاثیر آن بر چرخههای عناصر غذایی محدود است. در مقاله مروری حاضر سعی شده است تا یک جمعبندی از تحقیقات انجام شده در مورد پریفایتون و تاثیر آنها بر چرخه عناصر غذایی و بویژه بر رشد گیاه برنج در شالیزارها ارائه گردد. | ||
کلیدواژهها | ||
شالیزار؛ پریفایتون؛ جلبک؛ سیانوباکتری؛ فسفر | ||
مراجع | ||
Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136-144. Alikhani, H. A., & Emami, S. (2019). Periphyton is an opportunity to achieve sustainable agriculture. 16th Iranian soil science congress. (In Farsi) Alikhani, H. A., Ahmadi, H., Etesami, H., Noroozi, M., Asadi-Rahmani, H., & Emami, S. (2020). A study of the algae flora of the periphyton community in aquatic ecosystems of Guilan province. Soil Biology. (In Farsi) Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. Springer Science & Business Media. Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11-21. Azim, M. E. (2009). Photosynthetic periphyton and surfaces. Encyclopedia of Inland Waters, Academic Press, Oxford, pp. 184-191. Azim, M. E., Verdegem, M. C., van Dam, A. A., & Beveridge, M. C. (Eds.). (2005). Periphyton: ecology, exploitation and management. CABI. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251. Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hansen, C. M. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426(6965), 439-442. Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210. Bell, W., & Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to algal extracellular products. The Biological Bulletin, 143(2), 265-277. Belnap, J., Prasse, R., & Harper, K. T. (2001). Influence of biological soil crusts on soil environments and vascular plants. In Biological soil crusts: structure, function, and management (pp. 281-300). Springer, Berlin, Heidelberg. Bergey, E. A. (2008). Does rock chemistry affect periphyton accrual in streams?. Hydrobiologia, 614(1), 141-150. Bernhardt, E. S., & Likens, G. E. (2002). Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology, 83(6), 1689-1700. Borovec, J., Sirová, D., Mošnerová, P., Rejmánková, E., & Vrba, J. (2010). Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry, 101(1-3), 323-333. Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., ... & Lehmann, K. (2012). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment, 434, 201-212. Cao, Y., Tian, Y., Yin, B., & Zhu, Z. (2013). Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 147, 23-31. Chauhan, B. S., Jabran, K., & Mahajan, G. (Eds.). (2017). Rice production worldwide (Vol. 247). Springer International Publishing. Cho, M., Jang, T., Jang, J. R., & Yoon, C. G. (2016). Development of agricultural non‐point source pollution reduction measures in Korea. Irrigation and Drainage, 65, 94-101. Demars, B. O., Russell Manson, J., Olafsson, J. S., Gislason, G. M., Gudmundsdottír, R., Woodward, G. U. Y., ... & Friberg, N. (2011). Temperature and the metabolic balance of streams. Freshwater Biology, 56(6), 1106-1121. Dempster, P. W., Beveridge, M. C. M., & Baird, D. J. (1993). Herbivory in the tilapia Oreochromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. Journal of Fish Biology, 43(3), 385-392. Dodds, W. K. (2003). The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 39(5), 840-849. Drake, W. M., Scott, J. T., Evans-White, M., Haggard, B., Sharpley, A., Rogers, C. W., & Grantz, E. M. (2012). The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 13(1), 97-106. Dutta, R., Dutta, A., Bhagobaty, N., & Bhagabati, S. K. (2018). Periphyton community structure of Namsang stream, Arunachal Pradesh. COLDWATER FISHERIES SOCIETY OF INDIA, 1(1), 113-120. Elias, S., & Banin, E. (2012). Multi-species biofilms: living with friendly neighbors. FEMS microbiology reviews, 36(5), 990-1004. Ellwood, N. T., Di Pippo, F., & Albertano, P. (2012). Phosphatase activities of cultured phototrophic biofilms. Water research, 46(2), 378-386. Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects A review. Journal of soil science and plant nutrition, 17(4), 897-911. Feng, J., Wang, F., & Xie, S. (2011). Structure and dynamics of the periphytic algae of Jinyang Lake in Shanxi Province, North China. Acta Ecologica Sinica, 31(6), 310-316. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633. Gillett, N. D., Pan, Y., Asarian, J. E., & Kann, J. (2016). Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Science of the Total Environment, 541, 1382-1392. Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and soil, 337(1-2), 481-496. Growns, I. O., & Growns, J. E. (2001). Ecological effects of flow regulation on macroinvertebrate and periphytic diatom assemblages in the Hawkesbury–Nepean River, Australia. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 17(3), 275-293. Gubelit, Y. I., & Grossart, H. P. (2020). New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton?. Frontiers in Microbiology, 11, 1275. Gurumayum, S. D., & Goswami, U. C. (2013). Studies on seasonal and topographical variations of periphyton in the rivers of Manipur. Journal of Environmental Biology, 34(3), 599. Guschina, I. A., & Harwood, J. L. (2009). Algal lipids and effect of the environment on their biochemistry. In Lipids in aquatic ecosystems (pp. 1-24). Springer, New York, NY. Hao, X. H., Liu, S. L., Wu, J. S., Hu, R. G., Tong, C. L., & Su, Y. Y. (2008). Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutrient Cycling in Agroecosystems, 81(1), 17-24. Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil, 237(2), 173-195. Huang, L. M., Thompson, A., & Zhang, G. L. (2014). Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity. Soil and Tillage Research, 142, 32-41. Jonsson, P. R., Pavia, H., & Toth, G. (2009). Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences, 106(27), 11177-11182. Kasai, F. (1999). Shifts in herbicide tolerance in paddy field periphyton following herbicide application. Chemosphere, 38(4), 919-931. Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant and Soil, 272(1-2), 291-300. Keshavanath, P., Gangadhar, B., Ramesh, T. J., Van Dam, A. A., Beveridge, M. C. M., & Verdegem, M. C. J. (2004). Effects of bamboo substrate and supplemental feeding on growth and production of hybrid red tilapia fingerlings (Oreochromis mossambicus× Oreochromis niloticus). Aquaculture, 235(1-4), 303-314. Koedooder, C., Stock, W., Willems, A., Mangelinckx, S., De Troch, M., Vyverman, W., & Sabbe, K. (2019). Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Frontiers in microbiology, 10, 1255. Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and soil, 252(1), 151-167. Larned, S. T., & Santos, S. R. (2000). Light-and nutrient-limited periphyton in low order streams of Oahu, Hawaii. Hydrobiologia, 432(1-3), 101-111. Larras, F., Lambert, A. S., Pesce, S., Rimet, F., Bouchez, A., & Montuelle, B. (2013). The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicology and environmental safety, 98, 162-170. Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water research, 36(11), 2711-2720. Lavadia, M. G. B., Dagamac, N. H. A., & de la Cruz, T. E. (2017). Diversity and biofilm inhibition activities of algicolous fungi collected from two remote islands of the Philippine archipelago. Curr Res Environ Appl Mycol, 7(4), 309-21. Ledger, M. E., & Hildrew, A. G. (1998). Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshwater Biology, 40(4), 655-670. Lee, Y. M., Cho, K. H., Hwang, K., Kim, E. H., Kim, M., Hong, S. G., & Lee, H. K. (2016). Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment. Korean Journal of Microbiology, 52(1), 49-58. Liu, J., Danneels, B., Vanormelingen, P., & Vyverman, W. (2016a). Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water research, 92, 61-68. Liu, J., Liu, W., Wang, F., Kerr, P., & Wu, Y. (2016b). Redox zones stratification and the microbial community characteristics in a periphyton bioreactor. Bioresource Technology, 204, 114-121. Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., ... & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresource technology, 241, 1127-1137. Lu, H., Feng, Y., Wu, Y., Yang, L., & Shao, H. (2016a). Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Science of the Total Environment, 568, 838-844. Lu, H., Liu, J., Kerr, P. G., Shao, H., & Wu, Y. (2017). The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Science of the Total Environment, 578, 74-80. Lu, H., Wan, J., Li, J., Shao, H., & Wu, Y. (2016b). Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Chemosphere, 144, 2058-2064. Lu, H., Yang, L., Shabbir, S., & Wu, Y. (2014a). The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research, 21(14), 8782-8791. Lu, H., Yang, L., Zhang, S., & Wu, Y. (2014b). The behavior of organic phosphorus under non-point source wastewater in the presence of phototrophic periphyton. Plos one, 9(1), e85910. Ma, Q., Zhang, F., Rengel, Z., & Shen, J. (2013). Localized application of NH 4+-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 372(1-2), 65-80. Mailafia, S., & Agbede, S. A. (2016). Evaluation of Bacterial and Fungal Isolates of Biofilm of Water Distribution Systems and Receptacles in Abuja, Nigeria. European Journal of Experimental Biology, 6(4), 12-19. Maitra, N., Manna, S. K., Samanta, S., Sarkar, K., Debnath, D., Bandopadhyay, C., ... & Sharma, A. P. (2015). Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia, 745(1), 69-83. Makk, J., Beszteri, B., Ács, É., Márialigetl, K., & Szabó, K. (2003). Investigations on diatom-asso-ciated bacterial communities colonizing an artificial substratum in the River Danube. Large Rivers, 249-265. Martin, J. L. (2013). Hydro-environmental analysis: freshwater environments. CRC Press. Morris, J. J., Lenski, R. E., & Zinser, E. R. (2012). The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio, 3(2). Murdock, J. N., & Dodds, W. K. (2007). Linking benthic algal biomass to stream substratum topography 1. Journal of Phycology, 43(3), 449-460. Nakanishi, K., Takakura, K. I., Kanai, R., Tawa, K., Murakami, D., & Sawada, H. (2014). Impacts of environmental factors in rice paddy fields on abundance of the mud snail (Cipangopaludina chinensis laeta). Journal of Molluscan Studies, 80(4), 460-463. Ongley, E. D., Xiaolan, Z., & Tao, Y. (2010). Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution, 158(5), 1159-1168. Pandit, A. K., Farooq, S., & Shah, J. A. (2014). Periphytic algal community of Dal Lake in Kashmir Valley, India. Research Journal of Environmental Sciences, 8(7), 391. Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G., & Kramm, V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of applied phycology, 21(1), 135-144. Polunin, N. V. C. (1988). Efficient uptake of algal production by a single resident herbivorous fish on the reef. Journal of Experimental Marine Biology and Ecology, 123(1), 61-76. Poulíčková, A., Hašler, P., Lysáková, M., & Spears, B. (2008). The ecology of freshwater epipelic algae: an update. Phycologia, 47(5), 437-450. Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), 14-29. Rodríguez, P., Tell, G., & Pizarro, H. (2011). Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina). Wetlands, 31(1), 53-63. Round, F. E. (1991). Diatoms in river water-monitoring studies. Journal of applied phycology, 3(2), 129-145. Saikia, S. K. (2011). Review on Periphyton as Mediator of nutrient transfer in aquatic ecosystems. Ecologia Balkanica, 3(2). Saikia, S. K., Nandi, S., & Majumder, S. (2013). A review on the role of nutrients in development and organization of periphyton. Journal of Research in Biology, 3(1), 780-788. Salamone, A. L., Robicheau, B. M., & Walker, A. K. (2016). Fungal diversity of marine biofilms on artificial reefs in the north-central Gulf of Mexico. Botanica Marina, 59(5), 291-305. Samonte, S. O. P., Wilson, L. T., Medley, J. C., Pinson, S. R., McClung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield‐related traits in rice. Agronomy journal, 98(1), 168-176. Santos, T. R. D., & Ferragut, C. (2018). Changes in the taxonomic structure of periphytic algae on a free-floating macrophyte (Utricularia foliosa L.) in relation to macrophyte richness over seasons. Acta Botanica Brasilica, 32(4), 595-601. Shafqat, M. N., & Pierzynski, G. M. (2014). The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils. Chemosphere, 99, 72-80. Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516-525. Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here?. Trends in ecology & evolution, 24(4), 201-207. Stock, W., Blommaert, L., De Troch, M., Mangelinckx, S., Willems, A., Vyverman, W., & Sabbe, K. (2019). Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiology Ecology, 95(11), fiz171. Su, J., Kang, D., Xiang, W., & Wu, C. (2017). Periphyton biofilm development and its role in nutrient cycling in paddy microcosms. Journal of Soils and Sediments, 17(3), 810-819. Thompson, F. L., Abreu, P. C., & Wasielesky, W. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203(3-4), 263-278. Wardle, D. A., Nilsson, M. C., & Zackrisson, O. (2008). Fire-derived charcoal causes loss of forest humus. Science, 320(5876), 629-629. Whitton, B. A., & Roger, P. A. (1989). Use of blue-green algae and Azolla in rice culture. Wu, Y. (2013). The studies of periphyton: From waters to soils. Hydrology: Current Research, 4, e107. Wu, Y. (2013). The studies of periphyton: From waters to soils. Hydrology: Current Research, 4, e107. Wu, Y., Liu, J., & Rene, E. R. (2018). Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource technology, 248, 44-48. Wu, Y., Liu, J., Lu, H., Wu, C., & Kerr, P. (2016). Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields. Environmental Science and Pollution Research, 23(21), 21377-21384. Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H., & Zhang, N. (2011). Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology, 13(3), 604-615. Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., ... & Hu, S. (2013). Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil, 370(1-2), 527-540. Yang, J., Tang, C., Wang, F., & Wu, Y. (2016). Co-contamination of Cu and Cd in paddy fields: using periphyton to entrap heavy metals. Journal of hazardous materials, 304, 150-158. Zhang, B., Shi, Y. T., Liu, J. H., & Xu, J. (2017). Economic values and dominant providers of key ecosystem services of wetlands in Beijing, China. Ecological Indicators, 77, 48-58. Zhang, W., Ma, W., Ji, Y., Fan, M., Oenema, O., & Zhang, F. (2008). Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems, 80(2), 131-144. Zhou, L., Rong, X. M., Xie, G. X., Wang, X., & Xie, Y. (2014). Effects of different nitrogen fertilizers on rice yield and nitrogen use efficiency. Soils, 46(6), 971-975. Zhu, J. G., Liu, G., Han, Y., Zhang, Y. L., & Xing, G. X. (2003). Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere, 50(6), 725-732. | ||
آمار تعداد مشاهده مقاله: 1,657 تعداد دریافت فایل اصل مقاله: 495 |