
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,221,771 |
تعداد دریافت فایل اصل مقاله | 102,051,108 |
Green synthesis and Photo-catalyst study of ZnS-(Ni and Li) doped nanoparticles under solar irradiation | ||
Journal of Solar Energy Research | ||
دوره 6، شماره 1، فروردین 2021، صفحه 648-655 اصل مقاله (1011.91 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22059/jser.2021.317386.1188 | ||
نویسندگان | ||
Kambiz Hedayati* 1؛ Davood Ghanbari1؛ Fatemeh Hassanpoor2 | ||
1Department of Science, Arak University of Technology, Arak, Iran | ||
2Department of Science, Arak University of Technology, Arak | ||
چکیده | ||
It is very useful to use the solar irradiation for photocatalytic property, but need to reduce the band gap by doping the ions. In this paper ZnS (zinc sulphide) nanoparticles has been synthesized via co-precipitation and hydrothermal method. The co-precipitation and hydrothermal are simple, economical methods and they were used for a green surfactant assisted method for fabrication of ZnS and ZnS– (Ni and Li) doped nanoparticles. Glucose, sucrose or fructose were applied separately as green surfactants and capping agents. The Ni and Li ions were doped in ZnS nanocrystals for improvement of band gaps. The crystalline structure of zinc sulphide nanoparticles was investigated by X-ray diffraction (XRD) spectra and crystallite size of particles were calculated by debye-scherrer equation. The shape and morphology of ZnS particles was studied via scanning electron microscope (SEM). The Fourier-transform infrared spectroscopy (FTIR) was applied for the absorption peak of Zn-S bonding atoms. The photoluminescence (PL) measurement of the ZnS nanopowder was investigated at room temperature with an excitation wavelength around 360 nm. The photo-catalyst properties of ZnS nanoparticles were studied via ultraviolet – visible spectra (UV – Vis) of four different azo dyes acids under solar irradiation in times less than 120 min. | ||
کلیدواژهها | ||
Semiconductor؛ Azo dyes؛ Photoluminescence؛ UV irradiation؛ Green surfactant | ||
آمار تعداد مشاهده مقاله: 407 تعداد دریافت فایل اصل مقاله: 370 |