تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,389 |
تعداد دریافت فایل اصل مقاله | 97,222,933 |
کاربرد مدل مفهومی شبهسیال در مدلسازی انتقال بار بستر رسوبات در آبراهههای حاوی پوشش گیاهی | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 12، اسفند 1399، صفحه 3059-3070 اصل مقاله (968.16 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.308104.668701 | ||
نویسنده | ||
حسین ریاحی مدوار* | ||
استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه ولیعصر (عج) رفسنجان، ایران h.riahi@vru.ac.ir | ||
چکیده | ||
مدلسازی انتقال بار بستر در رودخانهها و آبراهههای حاوی پوشش گیاهی در بستر و سواحل، از اهمیت کاربردی ویژهای برخوردار است و پیچیدگی پدیده انتقال باربستر از درون پوشش گیاهی از یکطرف و محدود بودن تحقیقات در این زمینه از طرف دیگر، ضرورت توسعه مدلهای مناسب را مشهود میسازد. به همین منظور در این تحقیق از مدل مفهومی شبهسیال در ترکیب با معادلات تنش برشی و مقاومت بستر جریان از درون پوشش گیاهی استفاده شده است و مبتنی بر تحلیل احتمالاتی انتقال باربستر، مدلی برای انتقال بار بستر درون پوشش گیاهی توسعه مدل یافته است. این مدل براساس تعریف جدیدی از پارامترهای بدون بعد شدت جریان و شدت انتقال بار بستر رسوبات توسعه یافته است که خصوصیات پوشش گیاهی را با خصوصیات جریان و رسوبات ترکیب میکند. واسنجی توزیع احتمال تخمینی مدل و ضرایب مدل و ارزیابی دقت آن در مقایسه با نتایج دادههای آزمایشگاهی نشان داد مدل توسعه یافته با R2=0.91 و RMSE=8.2 دقت مطلوبی در تخمین باربستر رسوبات در مطالعه موردی دارد. تحلیل پارامتریک مشخصات پوشش گیاهی و همچنین مقایسه نتایج مدل شبهسیال توسعه یافته با مدل بار بستر پارکر (R2=0.45، RMSE=231.9) و مدل مایر-پیتر-مولر(R2=0.75، RMSE=91.9) نشان داد مدل توسعه یافته دقت بهتری در تخمین باربستر رسوبات از درون پوشش گیاهی دارد و به ترتیب 45 و 68 درصد، خطای مطلق نسبی را نسبت به آنها کاهش داده است. رویکرد توسعه یافته در تحقیق حاضر قابلیت توسعه برای تحلیل هیدرولیکی مسایل مهندسی رسوب در رودخانه را دارد. | ||
کلیدواژهها | ||
بار بستر رسوبات؛ تنش برشی؛ جریان درون پوشش گیاهی؛ مدل شبهسیال | ||
مراجع | ||
Afzalimehr, H., Riazi, P., Jahadi, M., & Singh, V. P. (2019). Effect of vegetation patches on flow structures and the estimation of friction factor. ISH Journal of Hydraulic Engineering, 1-11. Ai, Y. D., Liu, M. Y., & Huai, W. X. (2020). Numerical investigation of flow with floating vegetation island. Journal of Hydrodynamics, 32(1), 31-43. Aminian, P., Ahmadi, A., Emamgholizadeh, S. (2019). Experimental Study of the Effects of Hydraulic and Geometric Parameters of the Sediment Transport Tunnel on the Flow and Transmitted Sediment. Iranian Journal of Soil and Water Research, 50(2), 505-514. doi: 10.22059/ijswr.2018.256432.667896. (In Farsi). Ancey, C., Böhm, T., Jodeau, M., & Frey, P. (2006). Statistical description of sediment transport experiments. Physical Review E, 74(1), 011302. https://doi.org/10.1103/PhysRevE.74.011302 Armanini, A. (2018). Principles of river hydraulics (p. 217). Berlin: Springer. Armanini, A., & Cavedon, V. (2019). Bed-load through emergent vegetation. Advances in Water Resources, 129, 250-259. Armanini, A., Cavedon, V., & Righetti, M. (2015). A probabilistic/deterministic approach for the prediction of the sediment transport rate. Advances in Water Resources, 81, 10-18. Cavedon, V. (2012). Effects of rigid stems on sediment transport (Doctoral dissertation, University of Trento). Cheng, N. S. (1997). Effect of concentration on settling velocity of sediment particles. J. Hydraul. Eng., 123(8), 728–731. Cheng, N. S. (2013). Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model. Journal of Hydraulic Engineering, 139(6), 602-611. Cheng, N. S., & Nguyen, H. T. (2011). Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. Journal of hydraulic engineering, 137(9), 995-1004. Cheng, N.-S., Qiao, C., Chen, X., & Liu, X. (2014). Application of pseudo-fluid approximation to evaluation of flow velocity through gravel beds. Powder Technology, 260, 15-21. Drikvaandi, K., Fathi, M. M., Masjedi, A., & Bina, M. (2012). Evaluation effect of density and flaxibility of non-submerged vegetation on river banks and floodplains on the friction factors.Iran-Water Resources Research. 8(2). 24-35 Ebrahimi, N., Shirdeli, A., Nikkhah, J. E., & Hossrini, M. (2016). The impact of waterways bed's vegetation on flow hydraulic and bed form. Journal of Watershed Engineering and Management 8(2).P.182-192 Ebtehaj, I., Bonakdari, H., Safari, M. J. S., Gharabaghi, B., Zaji, A. H., Madavar, H. R., ... & Mehr, A. D. (2020). Combination of sensitivity and uncertainty analyses for sediment transport modeling in sewer pipes. International Journal of Sediment Research, 35(2), 157-170. https://doi.org/10.1016/j.ijsrc.2019.08.005 Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows (No. 1026). US Government Printing Office. Etminan, V., Lowe, R. J., & Ghisalberti, M. (2017). A new model for predicting the drag exerted by vegetation canopies. Water Resources Research, 53(4), 3179-3196. Gibilaro, L. G., Gallucci, K., Di Felice, R., & Pagliai, P. (2007). On the apparent viscosity of a fluidized bed. Chemical engineering science, 62(1-2), 294-300. Jordanova, A. A., & James, C. S. (2003). Experimental study of bed load transport through emergent vegetation. Journal of Hydraulic Engineering, 129(6), 474-478. Kim, J., Ivanov, V. Y., & Katopodes, N. D. (2012). Hydraulic resistance to overland flow on surfaces with partially submerged vegetation. Water Resources Research, 48(10). Le Bouteiller, C., & Venditti, J. G. (2014). Sediment transport and shear stress partitioning in a vegetated flow. Water Resources Research, 51(4), 2901-2922. Li, S., Shi, H., Xiong, Z., Huai, W., & Cheng, N. (2015). New formulation for the effective relative roughness height of open channel flows with submerged vegetation. Advances in Water Resources, 86, 46-57. Liu, M. Y., Huai, W. X., Yangyzh, Z. H., & Zeng, Y. H. (2020). A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows. Advances in Water Resources, 103582. Montakhab, A., Yusuf, B., Ghazali, A. H., & Mohamed, T. A. (2012). Flow and sediment transport in vegetated waterways: a review. Reviews in Environmental Science and Bio/Technology, 11(3), 275-287. Neary, V. S., Constantinescu, S. G., Bennett, S. J., & Diplas, P. (2012). Effects of vegetation on turbulence, sediment transport, and stream morphology. Journal of Hydraulic Engineering, 138(9), 765-776. Noori, A., Amini, R. (2020). Numerical Simulation of Incipient Motion Parameters of the Sediment Particles with Eulerian-Lagrangian Approach. Iranian Journal of Soil and Water Research, 50(10), 2439-2451. doi: 10.22059/ijswr.2019.272999.668088. (In Farsi). Qasem, S. N., Ebtehaj, I., & Riahi Madavar, H. (2017). Optimizing ANFIS for sediment transport in open channels using different evolutionary algorithms. Journal of Applied Research in Water and Wastewater, 4(1), 290-298. https://dx.doi.org/10.22126/arww.2017.773 Riahi-Madvar, H., & Seifi, A. (2018). Uncertainty analysis in bed load transport prediction of gravel bed rivers by ANN / ANFIS. Arabian Journal of Geosciences, 11(21), 688. https://doi.org/10.1007/s12517-018-3968-6 Roushangar, K., Shahnazi, S. (2019). Evaluating the Performance of Data-Driven Methods for Prediction of Total Sediment Load in Gravel-Bed Rivers. Iranian Journal of Soil and Water Research, 50(6), 1467-1477. doi: 10.22059/ijswr.2019.253848.667867 . (In Farsi). Stoesser, T., Kim, S. J., & Diplas, P. (2010). Turbulent flow through idealized emergent vegetation. Journal of Hydraulic Engineering, 136(12), 1003-1017. Van Rijn, LC. (1984). Sediment transport, part I: bed load transport. J Hydraul Eng;110(10):1431–56. Wan, Z., and Wang, Z. (1994). Hyperconcentrated flow, A.A. Balkema Rotterdam, The Netherlands Weiming, W. U., & Zhiguo, H. E. (2009). Effects of vegetation on flow conveyance and sediment transport capacity. International Journal of Sediment Research, 24(3), 247-259. Wu, W., and He, Z., (2009) Effects of vegetation on flow conveyance and sediment transport capacity. Int. J. Sed. Res. 24 (3), 247–259. https://doi.org/10.1016/S1001-6279(10)60001-7 . Wu, F. C., & Yang, K. H. (2004). Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures. Journal of Hydraulic Engineering, 130(12), 1187-1197. Wu, W., Shields, F.D., Bennett, S.J., and Wang, S.S., (2005). A depth-averaged two- dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation. Water Resou. Res. 41 (3), W03015. https://doi.org/10.1029/2004WR003730 . Yager, E. M., & Schmeeckle, M. W. (2013). The influence of vegetation on turbulence and bed load transport. Journal of Geophysical Research: Earth Surface, 118(3), 1585-1601. Yalin, M.S. (1977). Mechanics of sediment transport. Pergamon Zhang, G. H., Wang, L. L., Tang, K. M., Luo, R. T., & Zhang, X. C. (2011). Effects of sediment size on transport capacity of overland flow on steep slopes. Hydrological sciences journal, 56(7), 1289-1299. https://doi.org/10.1080/02626667.2011.609172 Zong, L., & Nepf, H. (2010). Flow and deposition in and around a finite patch of vegetation. Geomorphology, 116(3-4), 363-372. | ||
آمار تعداد مشاهده مقاله: 399 تعداد دریافت فایل اصل مقاله: 252 |