
تعداد نشریات | 162 |
تعداد شمارهها | 6,683 |
تعداد مقالات | 72,065 |
تعداد مشاهده مقاله | 128,922,802 |
تعداد دریافت فایل اصل مقاله | 101,705,426 |
Remainder Cordial Labeling of Graphs | ||
Journal of Algorithms and Computation | ||
مقاله 2، دوره 49، شماره 1، شهریور 2017، صفحه 17-30 اصل مقاله (286.63 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2017.7965 | ||
نویسندگان | ||
R. Ponraj* 1؛ K. Annathurai2؛ R. Kala3 | ||
1Department of Mathematics, Sri Paramakalyani College, Alwarkurichi{627 412, India | ||
2Department of Mathematics, Thiruvalluvar College,, Papanasam{627 425, India | ||
3Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli{ 627 012, India. | ||
چکیده | ||
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\rightarrow \{1,2,...,p\}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)\geq f(v)$ or $f(v)\geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $\left| e_{f}(0) - e_f(1) \right|\leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labelled with even integers and odd integers. A graph $G$ with a remainder cordial labeling is called a remainder cordial graph. We investigate the remainder cordial behavior of path, cycle, star, bistar, crown, comb, wheel, complete bipartite $K_{2,n}$ graph. Finally we propose a conjecture on complete graph $K_{n}$. | ||
کلیدواژهها | ||
vertex equitable labeling؛ vertex Path؛ cycle؛ Star؛ Bistar؛ Crown؛ Comb؛ Wheel؛ complete bipartite graph؛ complete graph graph | ||
آمار تعداد مشاهده مقاله: 583 تعداد دریافت فایل اصل مقاله: 544 |