- Ahlberg, S. H., Joutsjoki, V., & Korhonen, H. J. (2015). Potential of lactic acid bacteria in aflatoxin risk mitigation. International Journal of Food Microbiology, 207, 87-102.
- Alberts, J. F., Engelbrecht, Y., Steyn, P. S., Holzapfel, W. H., & Van Zyl, W. H. (2006). Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. International Journal of Food Microbiology, 109(1-2), 121-126.
- Broadbent, P., & KF, B. (1977). Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil.
- Cho, K. J., Kang, J. S., Cho, W. T., Lee, C. H., Ha, J. K., & Song, K. B. (2010). In vitro degradation of zearalenone by Bacillus subtilis. Biotechnology Letters, 32(12), 1921-1924.
- Cotty, P. J., & Bhatnagar, D. (1994). Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology, 60(7), 2248-2251.
- Desjardins, A. E. (2006). Fusarium mycotoxins: chemistry, genetics, and biology. American Phytopathological Society (APS Press).
- Dunlap, C. A., Schisler, D. A., Price, N. P., & Vaughn, S. F. (2011). Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. The Journal of Microbiology, 49(4), 603.
- EFSA. (2011). (http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2011.2197/epdf).
- Farzaneh, M., Ahmadzadeh, M., Gasempour, A., Mirabolfathy, M., Javan-Ninkkhah, M., & Sharifi-Tehrani, A. (2011). survey on degradation mechanism of Bacillus subtilis in aflatoxin produced by Aspergillus flavous. Plant Protection Science, 42(2), 191-198.(in farsi)
- Farzaneh, M., Shi, Z. Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfathy, M., & Javan-Nikkhah, M. (2012). Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 23(1), 100-106.
- Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74(2), 119-126.
- Gromadzka, K., Waśkiewicz, A., Goliński, P., & Świetlik, J. (2009). Occurrence of estrogenic mycotoxin–zearalenone in aqueous environmental samples with various NOM content. Water Research, 43(4), 1051-1059.
- International Agency for Research on Cancer, IARC. (1999). Overall Evaluations of Carcinogenicity to Humans. Monographs on the Evaluation of Carcinogenic Risk to Humans, IARC Monographs (Vol. 1). Lyon: IARC. 1–36.
- Iranian National Standards Organization. (2011). (http://isiri.gov.ir/oldstandard/portal/home/?65660)
- Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B. S., & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234-242.
- Kai, M., & Piechulla, B. (2009). Plant growth promotion due to rhizobacterial volatiles–An effect of CO2. FEBS Letters, 583(21), 3473-3477.
- Kazempour, M. N. (2004). Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathology Journal, 3(2), 88-96.
- Kokkonen, M., Jestoi, M. & Rizzo, A. (2005). The effect of substrate on mycotoxin production of selected Penicillium strains. International Journal of Food Microbiology, 99(2), 207-214.
- Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D. ... & Harbour, A. (1995). Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Bacteriology, 78(2), 97-108.
- Martins, M. L. & Martins, H. M. (2002). Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum. Food Chemistry, 79(3), 315-318.
- Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M. & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46(1), 46-56.
- Mirocha, C. J., Schauerhamer, B., Christensen, C. M., Niku-Paavola, M. L. & Nummi, M. (1979). Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Applied and Environmental Microbiology, 38(4), 749-750.
- Ongena, M. & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115-125.
- Pitt, J. I. (2000). Toxigenic fungi: which are important?. Sabouraudia, 38(Supplement_1), 17-22.
- Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062.
- Sadiq, F. A., Yan, B., Tian, F., Zhao, J., Zhang, H. & Chen, W. (2019). Lactic Acid Bacteria as Antifungal and Anti‐Mycotoxigenic Agents: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1403-1436.
- Samsudin, N. I. P. B. (2015). Potential biocontrol of fumonisin B1 production by Fusarium verticillioides under different ecophysiological conditions in maize. Cranfield University.
- Sanchis, V. & Magan, N. (2004). Environmental conditions affecting mycotoxins. Mycotoxins in Food: Detection and Control, 174-189.
- Shahcheraghi, S. H., Ayatollahi, J. & Lotfi, M. (2015). Applications of Bacillus subtilis as an important bacterium in medical sciences and human life. Tropical Journal of Medical Research, 18(1), 1.
- Sierra, A.G., El- Hassan, A., Hoglinger, B. & Voegele, R.T. (2016). Inhibitory actions of Bacillus subtilis HG77 on Fusarium graminearum and its zearalenone production. University of Hohenheim, Germany.
- Sundlof, S. F. & Strickland, C. (1986). Zearalenone and zeranol: potential residue problems in livestock. Veterinary and Human Toxicology, 28(3), 242.
- Tinyiro, S. E., Wokadala, C., Xu, D. & Yao, W. (2011). Adsorption and degradation of zearalenone by Bacillus strains. Folia Microbiologica, 56(4), 321.
- Toure, Y., Ongena, M. A. R. C., Jacques, P., Guiro, A. & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96(5), 1151-1160.
- Vahidinasab, M., Ahmadzadeh, M., Henkel, M., Hausmann, R. & Heravi, K. M. (2019). Bacillus velezensis UTB96 Is an Antifungal Soil Isolate with a Reduced Genome Size Compared to That of Bacillus velezensis FZB42. Microbiology Resource Announcements, 8(38), e00667-19.
- Zalila-Kolsi, I., Mahmoud, A. B., Ali, H., Sellami, S., Nasfi, Z., Tounsi, S. & Jamoussi, K. (2016). Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 192, 148-158.
|