
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,177,616 |
تعداد دریافت فایل اصل مقاله | 102,005,612 |
استفاده ازآئروژلهای نانوالیاف سلولز اصلاحشده با فتالیمید برای جذب ذرات معلق کوچکتر از 5/2 میکرون | ||
نشریه جنگل و فرآورده های چوب | ||
دوره 73، شماره 3، آبان 1399، صفحه 333-342 اصل مقاله (841.35 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2020.299183.1087 | ||
نویسندگان | ||
سیما سپهوند1؛ مهدی جنوبی* 2؛ علیرضا عشوری3 | ||
1دانشآموختۀ دکتری گروه علوم و مهندسی صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2دانشیار گروه علوم و مهندسی صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استاد پژوهشکدۀ فناوریهای شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران | ||
چکیده | ||
هدف این پژوهش، ساخت فیلترهای نانویی برای جذب ذرات معلق کوچکتر از 5/2 میکرون موجود در هوا با استفاده از نانوالیاف سلولز اصلاحشده با فتالیمید است. اصلاح نانوالیاف سلولز با فتالیمید در اسید استیک با نسبت نانوالیاف سلولز به فتالیمید 0:1، 1: 5/0، 1: 1 و 1: 5/1 درصد وزنی انجام گرفت. بررسی توسط آزمون میکروسکوپ الکترونی روبشی نشان داد که در اثر اصلاح هیچ تغییر معنیداری در ابعاد و ساختار نانوالیاف سلولز ایجاد نمیشود، اما با افزایش مقدار فتالیمید سطح ویژه افزایش مییابد، درحالی که تخلخل و قطر منافذ کاهش مییابد. همچنین نتایج تأثیر درجۀ حرارت بر میزان جذب ذرات معلق نشان داد که بیشترین جذب ذرات معلق کمتر از 1/0 میکرون مربوط به نانوالیاف سلولزی اصلاحشده با فتالیمید 5/1 درصد و دمای 65 درجه سلسیوس (76 درصد) بود. اما جذب ذرات معلق بزرگتر از 3/0 میکرون برای همۀ نانوفیلترهای حاصل از نانوالیاف سلولزی خالص و اصلاحشده بهطور جزئی افزایش یافت. | ||
کلیدواژهها | ||
اصلاح شیمیایی؛ جذب ذرات معلق 5/2 میکرون؛ فتالیمید؛ نانوالیاف سلولز | ||
مراجع | ||
[1]. Fang, M., Chan, C.K., and Yao, X. (2009). Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 43(1): 79-86. [2]. Andreae, M.O., and Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1-2): 13-41. [3]. Horton, D.E., Skinner, C.B., Singh, D., and Diffenbaugh, N.S. (2014). Occurrence and persistence of future atmospheric stagnation events. Nature Climate Change, 4(8): 698. [4]. Liu, C., Hsu, P.C., Lee, H.W., Ye, M., Zheng, G., Liu, N., Li, W., and Cui, Y. (2015). Transparent air filter for high-efficiency PM 2.5 capture. Nature Communications, 6(1): 1-9. [5]. Daneleviciute, A., Katunskis, J., and Buika, G. (2009). Electrospun PVA nanofibres for gas filtration applications. Fibers & Textiles in Eastern Europe, 6(77): 40-43. [6]. Choi, S., Drese, J.H., Eisenberger, P.M., and Jones, C.W. (2011). Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environmental Science & Technology, 45(6): 2420-2427. [7]. Sung, S., and Suh, M.P. (2014). Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine. Materials Chemistry A, 2(33): 13245-13249. [8]. Baker, R.W. (2012). Membrane Technology and Applications. John Wiley & Sons. [9]. Souzandeh, H., Molki, B., Zheng, M., Beyenal, H., Scudiero, L., Wang, Y., and Zhong, W.H. (2017). Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS Applied Materials & Interfaces, 9(27): 22846-22855. [10]. Valdebenito, F., García, R., Cruces, K., Ciudad, G., Chinga-Carrasco, G., and Habibi, Y. (2018). CO2 Adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustainable Chemistry & Engineering, 6(10): 12603-12612. [11]. Miyamoto, T., Takahashi, S.I., Ito, H., Inagaki, H., and Noishiki, Y. (1989). Tissue biocompatibility of cellulose and its derivatives. Biomedical Materials Research, 23: 125-133. [12]. Saljoughi, E., Sadrzadeh, M., and Mohammadi, T. (2009). Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Membrane Science, 326(2): 627–634. [13]. Zhang, R., Liu, C., Hsu, P.C., Zhang, C., Liu, N., Zhang, J., Lee, R.H., Lu, Y., Qiu, Y., Chu, S. and Cui, Y. (2016). Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Letters, 16(6): 3642-3649. [14]. Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., Oksman, K., and Yu, Q. (2020). A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 230: 115571. [15]. Souzandeh, H., Johnson, K.S., Wang, Y., Bhamidipaty, K., and Zhong, W.H. (2016). Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS Applied Materials & Interfaces, 8(31): 20023-20031. [16]. Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., and Yu, Q. (2019). Surface modification of cellulose nanofiber aerogels using phthalimide. Polymer Composites, 41: 219-226. [17]. Rafieian, F., Hosseini, M., Jonoobi, M., and Yu, Q. (2018). Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose, 25(8): 4695−4710. [18]. Molina, C.T., and Bouallou, C. (2016). Carbon dioxide absorption by ammonia intensified with membrane contactors. Clean Technologies and Environmental Policy, 18(7): 2133-2146. [19]. Feng, J., Nguyen, S.T., Fan, Z., and Duong, H.M. (2015). Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal, 270: 168-175. [20]. Kushwaha, N., and Kaushik, D. (2016). Recent advances and future prospects of phthalimide derivatives. Journal of Applied Pharmaceutical Science, 6: 159-171. [21]. Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W.H., and Wang, C. (2017). Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138: 124-133. | ||
آمار تعداد مشاهده مقاله: 457 تعداد دریافت فایل اصل مقاله: 288 |