تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,700 |
تعداد دریافت فایل اصل مقاله | 97,206,341 |
A Mathematical Model for Multi-Region, Multi-Source, Multi-Period Generation Expansion Planning in Renewable Energy for Country-Wide Generation-Transmission Planning | ||
Journal of Information Technology Management | ||
دوره 12، شماره 4، 2020، صفحه 215-231 اصل مقاله (945.81 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2020.298258.2476 | ||
نویسندگان | ||
Mohammadreza Taghizadeh-Yazdi1؛ Abdolkarim Mohammadi-Balani* 2 | ||
1Associate Prof., Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran. | ||
2PhD Candidate, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran. | ||
چکیده | ||
Environmental pollution and rapid depletion are among the chief concerns about fossil fuels such as oil, gas, and coal. Renewable energy sources do not suffer from such limitations and are considered the best choice to replace fossil fuels. The present study develops a mathematical model for optimal allocation of regional renewable energy to meet a country-wide demand and its other essential aspects. The ultimate purpose is to minimize the total cost by planning, including power plant construction and maintenance costs and transmission costs. Minimum-cost flow equations are embedded in the model to determine how regions can supply energy to other regions or rely on them to fulfill annual demand. In order to verify the applicability of the model, it is applied to a real-world case study of Iran to determine the optimal renewable energy generation-transmission decisions for the next decade. Results indicate that the hydroelectric and solar power plants should generate the majority of the generated renewable electricity within the country, according to the optimal solution. Moreover, regarding the significant population growth and waste generation in the country’s large cities, biomass power plants can have the opportunity to satisfy a remarkable portion of electricity demand. | ||
کلیدواژهها | ||
Renewable energy؛ Generation expansion planning؛ Transmission؛ Mathematical programming؛ Iran | ||
مراجع | ||
Abdelkafi, A., Masmoudi, A., & Krichen, L. (2018). Assisted power management of a stand-alone renewable multi-source system. Energy, 145, 195–205. https://doi.org/10.1016/j.energy.2017.12.133 Afsharzade, N., Papzan, A., Ashjaee, M., Delangizan, S., Van Passel, S., & Azadi, H. (2016). Renewable energy development in rural areas of Iran. Renewable and Sustainable Energy Reviews, 65, 743–755. https://doi.org/10.1016/j.rser.2016.07.042 Aghahosseini, A., Bogdanov, D., Ghorbani, N., & Breyer, C. (2018). Analysis of 100% renewable energy for Iran in 2030: Integrating solar PV, wind energy and storage. International Journal of Environmental Science and Technology, 15(1), 17–36. https://doi.org/10.1007/s13762-017-1373-4 Ajithapriyadarsini, S., Mary, P. M., & Iruthayarajan, M. W. (2019). Automatic generation control of a multi-area power system with renewable energy source under deregulated environment: Adaptive fuzzy logic-based differential evolution (DE) algorithm. Soft Computing, 23(22), 12087–12101. https://doi.org/10.1007/s00500-019-03765-2 Asrari, A., Ghasemi, A., & Javidi, M. H. (2012). Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study. Renewable and Sustainable Energy Reviews, 16(5), 3123–3130. https://doi.org/10.1016/j.rser.2012.02.052 Chassin, D. P., Behboodi, S., & Djilali, N. (2018). Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability. Applied Energy, 213, 262–271. https://doi.org/10.1016/j.apenergy.2018.01.041 Dagoumas, A. S., & Koltsaklis, N. E. (2019). Review of models for integrating renewable energy in the generation expansion planning. Applied Energy, 242, 1573–1587. https://doi.org/10.1016/j.apenergy.2019.03.194 de la Nieta, A. A. S., Gibescu, M., Wang, X., Song, M., Jensen, E., Saleem, A., Bremdal, B., & Ilieva, I. (2018). Local Economic Dispatch with Local Renewable Generation and Flexible Load Management. 2018 International Conference on Smart Energy Systems and Technologies (SEST), 1–6. https://doi.org/10.1109/SEST.2018.8495823 Djebbri, S., Ladaci, S., Metatla, A., & Balaska, H. (2018). Robust MRAC Supervision of a Multi-source Renewable Energy System Using Fractional-Order Integrals. 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 1–6. https://doi.org/10.1109/CISTEM.2018.8613425 Droege, P. (Ed.). (2008). Urban energy transition: From fossil fuels to renewable power (1st ed). Elsevier. Ecer, F., Pamucar, D., Hashemkhani Zolfani, S., & Keshavarz Eshkalag, M. (2019). Sustainability assessment of OPEC countries: Application of a multiple attribute decision making tool. Journal of Cleaner Production, 241, 118324. https://doi.org/10.1016/j.jclepro.2019.118324 Fizaine, F., & Court, V. (2015). Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI. Ecological Economics, 110, 106–118. https://doi.org/10.1016/j.ecolecon.2014.12.001 Ghorbani, N., Aghahosseini, A., & Breyer, C. (2020). Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis. Renewable Energy, 146, 125–148. https://doi.org/10.1016/j.renene.2019.06.079 Hosseini, S. E., Andwari, A. M., Wahid, M. A., & Bagheri, G. (2013). A review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews, 27, 533–545. https://doi.org/10.1016/j.rser.2013.07.015 Ilbahar, E., Cebi, S., & Kahraman, C. (2019). A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strategy Reviews, 25, 18–33. https://doi.org/10.1016/j.esr.2019.04.014 Iqbal, M., Azam, M., Naeem, M., Khwaja, A. S., & Anpalagan, A. (2014). Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews, 39, 640–654. https://doi.org/10.1016/j.rser.2014.07.120 Iran Ministry of Energy. (2020, August 16). List of Iran’s regional power companies. List of Regional Power Companies. http://moe.gov.ir/Sites-of-Water-Electricity/Regional-power-companies Keles, C., Alagoz, B. B., & Kaygusuz, A. (2017). Multi-source energy mixing for renewable energy microgrids by particle swarm optimization. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–5. https://doi.org/10.1109/IDAP.2017.8090163 Khojasteh, D., Khojasteh, D., Kamali, R., Beyene, A., & Iglesias, G. (2018). Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. Renewable and Sustainable Energy Reviews, 81, 2992–3005. https://doi.org/10.1016/j.rser.2017.06.110 Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596–609. https://doi.org/10.1016/j.rser.2016.11.191 Kumar, K. P., & Saravanan, B. (2017). Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review. Renewable and Sustainable Energy Reviews, 71, 348–358. https://doi.org/10.1016/j.rser.2016.12.063 Li, Z., Qiu, F., & Wang, J. (2016). Data-driven real-time power dispatch for maximizing variable renewable generation. Applied Energy, 170, 304–313. https://doi.org/10.1016/j.apenergy.2016.02.125 Mahmud, N., & Zahedi, A. (2016). Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renewable and Sustainable Energy Reviews, 64, 582–595. https://doi.org/10.1016/j.rser.2016.06.030 Melamed, M., Ben-Tal, A., & Golany, B. (2018). A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source. Renewable Energy, 118, 909–917. https://doi.org/10.1016/j.renene.2016.05.095 Mollahosseini, A., Hosseini, S. A., Jabbari, M., Figoli, A., & Rahimpour, A. (2017). Renewable energy management and market in Iran: A holistic review on current state and future demands. Renewable and Sustainable Energy Reviews, 80, 774–788. https://doi.org/10.1016/j.rser.2017.05.236 Naval, N., Sánchez, R., & Yusta, J. M. (2020). A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renewable Energy, 151, 57–69. https://doi.org/10.1016/j.renene.2019.10.144 Nazir, N., Racherla, P., & Almassalkhi, M. (2020). Optimal Multi-Period Dispatch of Distributed Energy Resources in Unbalanced Distribution Feeders. IEEE Transactions on Power Systems, 35(4), 2683–2692. https://doi.org/10.1109/TPWRS.2019.2963249 Office of Energy and Electricity Planning at Ministry of Energy. (2016). Iran Energy Balance Sheet 2016. Oree, V., Sayed Hassen, S. Z., & Fleming, P. J. (2017). Generation expansion planning optimisation with renewable energy integration: A review. Renewable and Sustainable Energy Reviews, 69, 790–803. https://doi.org/10.1016/j.rser.2016.11.120 Quaschning, V. (2016). Understanding renewable energy systems (Revised edition). Routledge, Taylor & Francis Group, Earthscan from Routledge. Radovanović, M., Filipović, S., & Pavlović, D. (2017). Energy security measurement – A sustainable approach. Renewable and Sustainable Energy Reviews, 68, 1020–1032. https://doi.org/10.1016/j.rser.2016.02.010 San Cristóbal, J. R. (2012). A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain. Renewable and Sustainable Energy Reviews, 16(7), 4461–4464. https://doi.org/10.1016/j.rser.2012.04.039 Schwerhoff, G., & Sy, M. (2017). Financing renewable energy in Africa – Key challenge of the sustainable development goals. Renewable and Sustainable Energy Reviews, 75, 393–401. https://doi.org/10.1016/j.rser.2016.11.004 Szargut, J., Ziębik, A., & Stanek, W. (2002). Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Conversion and Management, 43(9–12), 1149–1163. https://doi.org/10.1016/S0196-8904(02)00005-5 Theo, W. L., Lim, J. S., Ho, W. S., Hashim, H., & Lee, C. T. (2017). Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods. Renewable and Sustainable Energy Reviews, 67, 531–573. https://doi.org/10.1016/j.rser.2016.09.063 Twidell, J., & Weir, T. (2015). Renewable energy resources (Third edition). Routledge, Taylor & Francis Group. Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, 111799. https://doi.org/10.1016/j.enconman.2019.111799 Wei, W., Liu, F., Mei, S., & Hou, Y. (2015). Robust Energy and Reserve Dispatch Under Variable Renewable Generation. IEEE Transactions on Smart Grid, 6(1), 369–380. https://doi.org/10.1109/TSG.2014.2317744 Zaibi, M., Cherif, H., Champenois, G., Sareni, B., Roboam, X., & Belhadj, J. (2018). Sizing methodology based on design of experiments for freshwater and electricity production from multi-source renewable energy systems. Desalination, 446, 94–103. https://doi.org/10.1016/j.desal.2018.08.008 | ||
آمار تعداد مشاهده مقاله: 544 تعداد دریافت فایل اصل مقاله: 504 |