تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,081 |
تعداد دریافت فایل اصل مقاله | 97,233,607 |
مدلسازی تغییرات کربن آلی خاک با استفاده از شاخصهای سنجش از دور در حوضه آبخیز بالیخلیچای اردبیل | ||
تحقیقات آب و خاک ایران | ||
دوره 51، شماره 9، آذر 1399، صفحه 2417-2429 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2020.299509.668542 | ||
نویسندگان | ||
سولماز فتح العلومی* 1؛ علیرضا واعظی1؛ سید کاظم علوی پناه2؛ اردوان قربانی3 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
2گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران | ||
3گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
مدلسازی و تهیه اطلاعات دقیق از توزیع مکانی خصوصیات خاک، یک عامل کلیدی در بسیاری از کاربردهای محیطی و کشاورزی است. از اینرو، هدف از مطالعه حاضر، مدلسازی و تهیه نقشه رقومی کربن آلی خاک با استفاده از شاخصهای سنجش از دور در حوضه آبخیز بالخلیچای بود. ابتدا خصوصیات توپوگرافی و طیفی مؤثر بر مقدار کربن آلی خاک بر اساس شاخصهای مکانی و طیفی مختلف از مدل رقومی ارتفاع و تصویر ماهوارهای لندست 8 استخراج شد. سپس بر مبنای مدل جنگل تصادفی، عملکرد مدلسازی رقومی خاک در مدلسازی کربن آلی خاک در حالتهای استفاده از 1) متغیرهای زمینی، 2) شاخصهای طیفی و 3) ترکیب متغیرهای زمینی و شاخصهای طیفی، ارزیابی و مقایسه شد. برای این منظور، مقدار ضریب همبستگی (R2) بین مقادیر برآوردی و اندازهگیری شده کربن آلی خاک و ریشه میانگین مربعات خطا (RMSE) در حالتهای مختلف محاسبه شد. نتایج نشان داد که مقدار کربن آلی در منطقه از 32/0 تا 98/6 درصد متغیر و میانگین آن در منطقه 04/3درصد بود. تغییرات کربن در منطقه عمدتاً وابسته به تغییرات شاخصهای طیفی بود. در بین خصوصیات توپوگرافی، ارتفاع و در بین شاخصهای طیفی، ضریب گسیلندگی (Emissivity)، مهمترین خصوصیت در مدلسازی کربن آلی خاک بودند. مقدار R2 در سه مدل مذکور بهترتیب 51/0 62/0 و 75/0 و مقدار RMSE بهترتیب 88/0، 67/0 و 57/0 بود که نشاندهنده کارایی بهتر مدل سوم است. استفاده از ترکیب متغیرهای زمینی و طیفی سبب افزایش قابلتوجه دقت مدلسازی کربن آلی خاک میشود. | ||
کلیدواژهها | ||
سنجش از دور؛ کربن آلی خاک؛ متغیر محیطی؛ مدل جنگل تصادفی؛ مدل رقومی ارتفاع | ||
مراجع | ||
Akpa, S. I., Odeh, I. O., Bishop, T. F., & Hartemink, A. E. (2014). Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78(6), 1953-1966 Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607-11626 Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A.-X., & Scholten, T. (2014). Hyper-scale digital soil mapping and soil formation analysis. Geoderma, 213, 578-588 Bogunovic, I., Trevisani, S., Pereira, P., & Vukadinovic, V. (2018). Mapping soil organic matter in the Baranja region (Croatia): Geological and anthropic forcing parameters. Science of the Total Environment, 643, 335-345 Böhner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., & Selige, T. (2001). Soil regionalisation by means of terrain analysis and process parameterisation. Soil classification(7), 213 Böhner, J., & Selige, T. (2006). Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32 Carré, F., McBratney, A. B., Mayr, T., & Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, 142(1-2), 69-79 Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S., & Casa, R. (2016). Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, 179, 54-65 Chen, H., Fan, L., Wu, W., & Liu, H.-B. (2017). Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environmental monitoring and assessment, 189(10), 525 Costa, E. M., Samuel-Rosa, A., & Anjos, L. H. C. d. (2018). Digital elevation model quality on digital soil mapping prediction accuracy. Ciência e Agrotecnologia, 42(6), 608-622 Croft, H., Kuhn, N., & Anderson, K. (2012). On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena, 94, 64-74 Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165 Davy, M., & Koen, T. (2014). Variations in soil organic carbon for two soil types and six land uses in the Murray Catchment, New South Wales, Australia. Soil Research, 51(8), 631-644 Desmet, P., & Govers, G.(1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427-433 Dharumarajan, S., Hegde, R., & Singh, S. (2017). Spatial prediction of major soil properties using Random Forest techniques-A case study in semi-arid tropics of South India. Geoderma Regional, 10, 154-162 Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., & Biswas, A. (2020). Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area. Science of the Total Environment, 138319 Firozjaei, M. K., Kiavarz, M., Alavipanah, S. K., Lakes, T., & Qureshi, S. (2018). Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecological indicators, 91, 155-170 Firozjaei, M. K., Kiavarz, M., Nematollahi, O., Karimpour Reihan, M., & Alavipanah, S. K. (2019). An evaluation of energy balance parameters, and the relations between topographical and biophysical characteristics using the mountainous surface energy balance algorithm for land (sebal). International Journal of Remote Sensing, 1-31 Forkuor, G., Hounkpatin, O. K., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS one, 12(1), e0170478. Freeman, T. G. (1991). Calculating catchment area with divergent flow based on a regular grid. Computers & geosciences, 17(3), 413-422. Frey, H., & Paul, F. (2012). On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. International Journal of Applied Earth Observation and Geoinformation, 18, 480-490. Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 3(12)9. Gao, Z., Tong, B., Horton, R., Mamtimin, A., Li, Y., & Wang, L. (2017). Determination of desert soil apparent thermal diffusivity using a conduction‐convection algorithm. Journal of Geophysical Research: Atmospheres, 122(18), 9569-9578 Gholizadeh, A., Žižala, D., Saberioon, M., & Borůvka, L. (2018). Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment, 218, 89-103. Goodman, J., Owens, P., & Libohova, Z. (2012). Predicting soil organic carbon using mixed conceptual and geostatistical models. Digital soil assessments and beyond, 155-159. Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma, 146(1-2), 102-113. Guo, L. B., & Gifford, R. (2002). Soil carbon stocks and land use change: a meta analysis. Global change biology, 8(4), 345-360 İmamoğlu, M. Z., & Sertel, E. (2016). Analysis of different interpolation methods for soil moisture mapping using field measurements and remotely sensed data. International Journal of Environment and Geoinformatics, 3(3), 11-25 Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm. csi. cgiar. org). Kopacková, V., Jelének, J., Koucká, L., Fárová, K., & Pikl, M. (2018). Modelling soil Organic Carbon and mineral composition using reflectance and emissivity data. Paper presented at the EGU General Assembly Conference Abstracts Köthe, R., & Lehmeier, F. (1996). SARA—System zur Automatischen Relief-Analyse, Benutzerhandbuch. Department of Geography, University of Göttingen, Göttingen Liang, S. (2001). Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing of Environment, 76(2), 213-238 Lindsay, J. B. (2018). WhiteboxTools User Manual. In: DOI Lloyd, C. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150 Ma, Y., Minasny, B., Malone, B., & McBratney, A. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science Ma, Y., Minasny, B., & Wu, C. (2017). Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional, 10, 144-153 Mahmoodi, M. A., Mirzaie, M., & Bavaghar, M. P. (2018). Assessment of soil organic matter status using regression kriging technique and Landsat images. (In Farsi) Mahmoudabadi, E., Karimi, A., Haghnia, G. H., & Sepehr, A. (2017). Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental monitoring and assessment, 189(10), 500 McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52. Mishra, N., Haque, M. O., Leigh, L., Aaron, D., Helder, D., & Markham, B. (2014). Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+). Remote Sensing, 6(12), 12619-12638. Müller, B., Bernhardt, M., Jackisch, C., & Schulz, K. (2016). Estimating spatially distributed soil texture using time series of thermal remote sensing-a case study in central Europe. Hydrology and Earth System Sciences(9), 3765-3775. Osunbitan, J., Oyedele, D., & Adekalu, K. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research, 82(1), 57-64. Popescu, R., Deodatis, G., & Nobahar, A. (2005). Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 20(4), 324-341. Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., & Thompson, J. (2018). Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Science Society of America Journal, 82(1), 186-201 Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA: Thomson/Brooks/Cole Belmont, CA. Ullah, S., Schlerf, M., Skidmore, A. K., & Hecker, C. (2012). Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (814 μm) emissivity spectra. Remote Sensing of Environment, 118, 95-102 Vidana Gamage, D. N., Biswas, A., Strachan, I. B., & Adamchuk, V. I. (2018). Soil water measurement using actively heated fiber optics at field scale. Sensors, 18(4), 1116 Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38 Weng, Q., Firozjaei, M. K., Sedighi, A., Kiavarz, M., & Alavipanah, S. K. (2019). Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. GIScience & remote sensing, 56(4), 576-604 Wiesmeier, M., Barthold, F., Blank, B., & Kögel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant and soil, 340(1-2), 7-24 Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47-56 Zhao, W., Duan, S.-B., Li, A., & Yin, G. (2019). A practical method for reducing terrain effect on land surface temperature using random forest regression. Remote Sensing of Environment, 221, 635-649. | ||
آمار تعداد مشاهده مقاله: 1,086 تعداد دریافت فایل اصل مقاله: 837 |