![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,507,287 |
تعداد دریافت فایل اصل مقاله | 98,771,055 |
مدلسازی محتوای الکترونی کلی بر حسب توابع پایه شعاعی کروی در منطقه ایران | ||
فیزیک زمین و فضا | ||
مقاله 5، دوره 46، شماره 1، اردیبهشت 1399، صفحه 67-80 اصل مقاله (744.65 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2020.286297.1007142 | ||
نویسندگان | ||
شایان خوشگواری1؛ یزدان عامریان* 2؛ هانی محبوبی3 | ||
1دانشجوی کارشناسی ارشد، گروه ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجهنصیرالدینطوسی، تهران، ایران | ||
2استادیار، گروه ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجهنصیرالدینطوسی، تهران، ایران | ||
3دانشجوی دکتری، گروه ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجهنصیرالدینطوسی، تهران، ایران | ||
چکیده | ||
مدلسازی پارامترهای چگالی الکترونی یونسفر (IED) و محتوای الکترونی کلی (TEC) در تعیین موقعیت ماهوارهای با گیرندههای تک فرکانسه، مطالعات فیزیک فضا، عملکرد سیستمهای راداری و ارتباطات مخابراتی ضروری است. مدلهای مرجع بینالمللی یونسفر (IRI) و نقشههای جهانی یونسفر (GIMs) منابع اطلاعاتی هستند که TEC را در مقیاس جهانی در اختیار کاربران قرارمیدهند. این مدلها از منابع دادههای جهانی بهدست آمدهاند که در منطقه ایران دارای تراکم مناسبی نیستند، بنابراین دقت آنها در این ناحیه کم است. لذا مطالعه و مدلسازی محلی TEC در منطقه ایران دارای اهمیت است. در این مطالعه مدلسازی TEC برحسب توابع پایه شعاعی کروی (SRBF) و با استفاده از مشاهدات شبکه دائم GPS ایران انجام شده است. در این مطالعه مدلسازی TEC در روز 124ام سال 2016 در کل منطقه ایران که دادهها دارای تراکم یکنواخت نیستند و همچنین در محدوده شمال غرب ایران که دادهها دارای تراکم یکنواختتری هستند، صورت گرفته است. نتایج مدلسازی نشان میدهند که مدل ارائهشده از GIMs دقیقتر است و همچنین دقت مدلسازی در منطقه شمال غرب ایران که توزیع مشاهدات یکنواختتر است، بیشتر میباشد. در کل منطقه ایران دقت مدلسازی VTEC با روش مقاله برای بازه زمانی 0 تا 1 و 10 تا 11 ساعت جهانی بهمیزان 04/1 و 67/0 در مقیاس TECU نسبت به GIMs بهبود مییابد. همچنین محدود کردن ناحیه مدلسازی به شمال غرب ایران و افزایش تراکم توزیع دادهها، موجب بهبود دقت بهمیزان 54/1 و 86/0 TECU نسبت به GIMs میشود. | ||
کلیدواژهها | ||
مدلسازی منطقهای یونسفر؛ مجموع محتوای الکترونی؛ نقشههای جهانی یونسفر؛ توابع پایه شعاعی کروی؛ پایدارسازی تیخونوف | ||
مراجع | ||
قلیپور، ن. و عامریان، ی.، 1398، برآورد مقادیر اریب تفاضلی کد گیرندههای شبکه دائم GPS ایران با استفاده از نقشههای یونسفری جهانی، نشریه علمی پژوهشی علوم و فنون نقشهبرداری، 8(4)، 177-186.
Al-Fanek, O.J.S., 2013, Ionospheric imaging for Canadian polar regions, University of Calgary. Amerian, Y., 2013, Regional modeling of the ionospheric electron density using wavelet analysis and GPS observations. Faculty of Geodesy and Geomatics Engineering, PhD Thesis, KN Toosi University of Technology. Amerian, Y., Hossainali, M.M. and Voosoghi, B., 2013a, Regional improvement of IRI extracted ionospheric electron density by compactly supported base functions using GPS observations. Journal of Atmospheric and Solar-Terrestrial Physics, 92, pp.23-30. Amerian, Y., Voosoghi, B. and Hossainali, M.M., 2013b, Regional ionosphere modeling in support of IRI and wavelet using GPS observations. Acta Geophysica, 61(5), 1246-1261. Arikan, F., Deviren, M., Lenk, O., Sezen, U. and Arikan, O., 2012, Observed ionospheric effects of 23 October 2011 Van, Turkey earthquake. Geomatics, Natural Hazards and Risk, 3(1), 1-8. Arikan, F., Erol, C. and Arikan, O., 2003, Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research: Space Physics, 108(A12). Arikan, F., Nayir, H., Sezen, U. and Arikan, O., 2008, Estimation of single station interfrequency receiver bias using GPS‐TEC. Radio Science, 43(4). Bilitza, D. and Reinisch, B. W., 2008, International reference ionosphere 2007: improvements and new parameters. Advances in space research, 42(4), 599-609. Bucha, B., Bezděk, A., Sebera, J. and Janák, J., 2015, Global and regional gravity field determination from GOCE kinematic orbit by means of spherical radial basis functions. Surveys in Geophysics, 36(6), 773-801. Bucha, B., Janák, J., Papčo, J. and Bezděk, A., 2016, High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 949-966. Calais, E. and Minster, J. B., 1998, GPS, earthquakes, the ionosphere, and the Space Shuttle. Physics of the Earth and Planetary Interiors, 105(3-4), 167-181. Etemadfard, H. and Hossainali, M. M., 2016, Application of Slepian theory for improving the accuracy of SH‐based global ionosphere models in the Arctic region. Journal of Geophysical Research: Space Physics, 121(3), 2583-2594. Etemadfard, H. and Hossainali, M. M., 2017, Vector ionosphere modeling by vector spherical Slepian base functions. GPS solutions, 21(2), 675-684. Farzaneh, S. and Forootan, E., 2018, Reconstructing regional ionospheric electron density: a combined spherical slepian function and empirical orthogonal function approach. Surveys in Geophysics, 39(2), 289-309. Hansen, P. C., 1994, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numerical algorithms, 6(1), 1-35. Heikkinen, M., 1981, Solving the shape of the earth by using digital density models. Rep. Finnish Geod. Inst., 81(2), 69-81. Jin, S., Cho, J.-H. and Park, J.-U., 2007, Ionospheric slab thickness and its seasonal variations observed by GPS. Journal of Atmospheric and Solar-Terrestrial Physics, 69(15), 1864-1870. Klees, R., Slobbe, D. and Farahani, H., 2018, A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. Journal of Geodesy, 92(4), 431-442. Komjathy, A., 1997, Global ionospheric total electron content mapping using the Global Positioning System, University of New Brunswick Fredericton. Leick, A., Rapoport, L. and Tatarnikov, D., 2015, GPS satellite surveying. John Wiley & Sons. Leigh, R., Robinson, T. and Lester, M., 1988, Ionospheric corrections for radar altimetry, International Geoscience and Remote Sensing Symposium,'Remote Sensing: Moving Toward the 21st Century'. IEEE, 989-992. Liu, Z., 2004, Ionosphere tomographic modeling and applications using Global Positioning System (GPS) measurements. Calgary. Liu, Q., Kikuchi, F., Goossens, S., Matsumoto, K., Hanada, H., Ping, J., Shi, X., Tamura, Y., Harada, Y., Asari, K., Tsuruta, S., Ishikawa, T., Kawano, N., Ishihara, Y., Noda, H., Sasaki, Sh., Iwata, T. and Namiki, N., 2009, S-band same-beam VLBI observations in SELENE (Kaguya) and correction of atmospheric and ionospheric delay. J. Geod. Soc. Japan, 55, 243-254. Nohutcu, M., Karslioglu, M. and Schmidt, M., 2010, B-spline modeling of VTEC over Turkey using GPS observations. Journal of Atmospheric and Solar-Terrestrial Physics, 72(7-8), 617-624. Safari, A., Sharifi, M. and Foroughi, I., 2013, Local gravity field modeling using radial basis functions, case study: coastal area of the Persian Gulf. Journal of the EARTH and SPACE PHYSICS, 39, 33-48. Schaer, S., 1999, Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD thesis, Bern University, Switzerland. Schmidt, M., Karslioglu, M.O. and Zeilhofer, C., 2008, Regional multi-dimensional modeling of the ionosphere from satellite data. Proceedings of the TUJK Annual Scientific Meeting, Ankara. Schmidt, M., Dettmering, D., Mößmer, M., Wang, Y. and Zhang, J., 2011, Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Science, 46(6). Schreiner, W. S., Markin, R. E. and Born, G. H., 1997, Correction of single frequency altimeter measurements for ionosphere delay. IEEE transactions on geoscience and remote sensing, 35(2), 271-277. Sezen, U., Arikan, F., Arikan, O., Ugurlu, O. and Sadeghimorad, A., 2013, Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather, 11(5), 297-305. Sharifi, M. A. and Farzaneh, S., 2014, The spatio-spectral localization approach to modeling VTEC over the western part of the USA using GPS observations. Advances in Space Research, 54(6), 908-916. Sharifi, M. A. and Farzaneh, S., 2016, Local Ionospheric Modeling Using the Localized Global Ionospheric Map and Terrestrial GPS. Acta Geophysica, 64(1), 237-252. Sharifi, M. A. and Farzaneh, S., 2017, The ionosphere electron density spatio-temporal modeling based on the Slepian basis functions. Acta Geodaetica et Geophysica, 52(1), 5-18. Steigenberger, P., Rothacher, M., Dietrich, R., Fritsche, M., Rulke, A. and Vey, S., 2006, Geodesy and Gravity Tectonophysics-B05402-Reprocessing of a global GPS network (DOI 10.1029/2005JB003747). Journal of Geophysical Research-Part B-Solid Earth, 111(5). Tenzer, R. and Klees, R., 2008, The choice of the spherical radial basis functions in local gravity field modeling. Studia Geophysica et Geodaetica, 52(3), 287. Tenzer, R., Klees, R. and Wittwer, T., 2012, Local gravity field modelling in rugged terrain using spherical radial basis functions: case study for the Canadian rocky mountains, Geodesy for Planet Earth. Springer, 401-409. Wittwer, T., 2009, Regional gravity field modelling with radial basis functions. Zeilhofer, C., 2008, Multi-dimensional B-spline modeling of spatio-temporal ionospheric signals. 123, A, DGK, Mänchen. | ||
آمار تعداد مشاهده مقاله: 1,163 تعداد دریافت فایل اصل مقاله: 709 |