تعداد نشریات | 161 |
تعداد شمارهها | 6,486 |
تعداد مقالات | 70,064 |
تعداد مشاهده مقاله | 123,047,438 |
تعداد دریافت فایل اصل مقاله | 96,281,300 |
Production of Nanofibers Containing Magnesium Oxide Nanoparticles for the Purpose of Bioaerosol Removal | ||
Pollution | ||
مقاله 16، دوره 6، شماره 1، فروردین 2020، صفحه 185-196 اصل مقاله (923.79 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2019.278394.604 | ||
نویسندگان | ||
S. F. Dehghan1؛ F. Golbabaei2؛ T. Mousavi2؛ H. Mohammadi2؛ M. H. Kohneshahri2؛ R. Bakhtiari3 | ||
1Department of Occupational Health, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran | ||
2Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran | ||
3Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran | ||
چکیده | ||
The present study aims at investigation of the performance of nanofibrous filter, containing magnesium oxide (MgO) nanoparticles, for bioaerosols removal from the air stream. It synthesizes two types of polyacrylonitrile (PAN) and PAN/MgO nanofibers via electrospinning technique, and investigates the antibacterial properties of the produced nanofibers through disk diffusion. The air containing staphylococcus epidermidis is introduced into the filter test rig by a nebulizer and air sampling from the microorganisms takes place before and after the filters by means of a cascade impactor with blood agar culture medium, with the filters, themselves, examined at two states of UVC radiation and dark. The mean diameters of PAN/MgO and PAN are 221.38±65.56 nm and 320.25±87.35 nm, respectively, with the mean length of the inhibition zone for these nanofibers calculated as 0 (for PAN) and 2.8 mm (for PAN/MgO). It turns out that the mean percentage of filtration efficiency is higher in case of PAN/MgO than PAN nanofiber filter; however, the former displays higher mean pressure drop than the latter. For both types of nanofibers under UVC radiation, the mean percentage efficiency for bioaerosol removal is higher than in the dark. | ||
کلیدواژهها | ||
Nanofibers؛ Nanoparticle؛ Air Filter؛ Bioaerosol؛ Removal Efficiency | ||
مراجع | ||
Bagherzadeh, R., Latifi, M., Najar, S.S. and Kong, L. (2013). Three‐dimensional pore structure analysis of Nano/Microfibrous scaffolds using confocal laser scanning microscopy. J. Biomed. Mater. Res. A ., 101 (3):765-74.
Balamurugan, R., Sundarrajan, S. and Ramakrishna,S. (2011). Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes., 1:232-48.
Bao, L., Seki, K., Niinuma, H., Otani, Y., Balgis,R., Ogi, T., Gradon, L. and Okuyama, K.(2016). Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Sep. Purif. Technol., 159:100-07.
Brown, R.C.( 1993). Air filtration. Pergamon Press, London.
Burge, H.A.(2018). Indoor sources for airborne microbes, Indoor air and human health. CRC Press, pp. 153-62.
Chuaybamroong, P., Chotigawin, R., Supothina, S., Sribenjalux, P., Larpkiattaworn, S. and Wu, C.Y.(2010). Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air., 20:246-54.
Dadvar, S., Tavanai, H. and Morshed, M.(2011). UV- protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al 2 O 3 nanoparticles. J. Nanopart. Res., 13:5163.
De Faria, A.F., Perreault, F.o., Shaulsky, E., Arias Chavez, L.H. and Elimelech, M.(2015). Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS. Appl. Mater. Interfaces., 7:12751-59.
Dehghan, S., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M. and Akbar, F.(2016). Optimization of Electrospinning Parameters for PAN-MgO Nanofibers Applied in Air Filtration. J. Air. Waste. Manag. Assoc., 66:912-21.
Dehghan, S.F., Golbaaei, F., Maddah, B., Yarahmadi, R. and Sadigh Zadeh, A. (2015). Experimental Investigations on electrospun mat production: for use in high-performance air filters. IJOH. 7:110-18.
Dehghan, S.F., Golbabaei, F., Maddah, B., Yarahmadi, R. and Sadigh Zadeh, A. (2016). Fabrication and Optimization of Electrospun Polyacrylonitrile Nanofiber for Application in Air Filtration. IOH. 13:11-23.
Farsani, R.E., Raissi, S., Shokuhfar, A. and Sedghi, A. (2009). FT-IR study of stabilized PAN fibers for fabrication of carbon fibers. World Acad. Sci. Eng. Technol., 50:430-33.
Hakansson, A., Orihuela, C. and Bogaert, D. (2018). Bacterial-host interactions: physiology and pathophysiology of respiratory infection. Physiol Rev., 98:781-811.
Hosseini, S. and Tafreshi, H.V. (2010). Modeling permeability of 3-D nanofiber media in slip flow regime. Chem. Eng. Sci., 65:2249-54.
Hutten, I. (2007). Handbook of Nonwoven Filter Media. Elsevier, Oxford , UK. International Organization for Standardization (2004). ISO 20645.Determination of Antibacterial Activity: Agar Difusion Plate Test. ISO, Geneva.
International Organization for Standardization. (2011). ISO 29463: High-efficiency filters and filter media for removing particles in air-- Part 3: Testing flat sheet filter media. International Organization for Standardization, Geneva.
Kim, K.-H., Kabir, E. and Jahan, S.A. (2018). Airborne bioaerosols and their impact on human health. J. Environ. Sci., 67: 23-35.
Kim, Y., Cho, S., Lee, S. and Lee, Y.-S.( 2012).Fabrication and characterization of porous non-woven carbon based highly sensitive gas sensors derived by magnesium oxide. Carbon letters., 13:254-59.
Kong, H. and Jang, J. (2008). Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir., 24:2051-56.
Krishnamoorthy, K., Manivannan, G., Kim, S.J., Jeyasubramanian, K. and Premanathan, M. (2012). Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J. Nanopart. Res., 14:1063.
Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H.-G. and Erdinger, L.(2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere., 53:71-77.
Kwon, I.K., Kidoaki, S. and Matsuda, T. (2005). Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials., 26:3929-39.
Lala, N.L., Ramaseshan, R., Bojun, L., Sundarrajan, S., Barhate, R., Ying‐jun, L. and Ramakrishna, S.(2007). Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol. Bioeng., 97:1357-65.
Lee, J.H., Wu, C.Y., Wysocki, K., Farrah, S. and Wander, J.(2008). Efficacy of iodine‐treated biocidal filter media against bacterial spore aerosols. J. Appl. Microbiol., 105:1318-26.
Li, H.-W., Wu, C.-Y., Tepper, F., Lee, J.-H. and Lee, C.N. (2009). Removal and retention of viral aerosols by a novel alumina nanofiber filter.
Matuka, D., Singh, T., Ratshikhopha, E., Dayal, P., Baatjies, R., Ngajilo, D. and Jeebhay, M. (2018). 1204 Occupational exposure assessment to bioaerosols in poultry farming activities. Occup Environ Med 2018;75(Suppl 2):A1–A650.
Matulevicius, J., Kliucininkas, L., Martuzevicius, D., Krugly, E., Tichonovas, M. and Baltrusaitis, J. (2014). Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J .Nanomater., 2014 :1-13.
Mohraz, M., Golbabaei, F., Yu, I., Mansournia, M., Sadigh Zadeh, A. and Dehghan, S.F. (2019). Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications. Int. J. Environ. Sci. Technol., 16: 681–694.
Morakinyo, O.M., Mokgobu, M.I., Mukhola, M.S. and Hunter, R.P. (2016). Health outcomes of exposure to biological and chemical components of inhalable and respirable particulate matter. Int. J. Environ. Res. Public. Health., 13:1-22.
Mousavi, T., Golbabaei, F., Pourmand, M.R., Rezaei, S., Hosseini, M., Helmi Kohneshahri, M., Masoorian, E. and Karimi, A. (2017). Evaluating the efficiency of UVC radiation on HEPA filters to remove airborne microorganisms. JHSW. 7:111-20.
Noorpoor, A., Sadighzadeh, A. and Anvari, A. (2014). Effect of nylon-6 concentration on morphology and efficiency of nanofibrous media. Int. J. Environ. Res., 8:421-26.
Ozden, D. and Basal, G. (2017). Polyamide 6/chitosan nanofiber coated HEPA filter for bioaerosol control. Ind.Textila. 68:427-34.
Papkov, D., Zou, Y., Andalib, M.N., Goponenko, A., Cheng, S.Z. and Dzenis, Y.A. (2013). Simultaneously strong and tough ultrafine continuous nanofibers. ACS nano., 7:3324-31.
Pham, T.-D. and Lee, B.-K. (2016). Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO2/PU under visible irradiation. Chem. Eng. J., 286:377-86.
Pigeot-Remy, S., Lazzaroni, J., Simonet, F., Petinga, P., Vallet, C., Petit, P., Vialle, P. and Guillard, C. (2014). Survival of bioaerosols in HVAC system photocatalytic filters. Appl. Catal B- Environ., 144:654-64.
Ravikumar, S., Gokulakrishnan, R., Selvanathan, K. and Selvam, S. (2011). Antibacterial activity of metal oxide nanoparticles against ophthalmic pathogens. Int. J. Pharm. Res. Dev., 3:122-27.
Shalumon, K., Anulekha, K., Nair, S.V., Nair, S., Chennazhi, K., Jayakumar, R. (2011). Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int. J. Biol. Macromol., 49:247-54.
Shao, C., Guan, H., Liu, Y. and Mu, R. (2006). MgO nanofibres via an electrospinning technique. J. Mater. Sci. 41:3821-24.
Son, W.K., Youk, J.H., Lee, T.S. and Park, W.H. (2004). Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol. Rapid Commun., 25:1632-37.
Tang, Z.-X., Fang, X.-J., Zhang, Z.-L., Zhou, T., Zhang, X.-Y. and Shi, L.-E. (2012). Nanosize MgO as antibacterial agent: preparation and characteristics. Braz. J. Chem. Eng., 29:775-81.
Tang, Z.-X. and Lv, B.-F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng., 31:591-601.
Tobler, D. and Warner, L. (2005). Nanotech silver fights microbes in medical devices. MDDI.Published online: https://www.mddionline.com/nanotech-silver- fights-microbes-medical-devices.
Walser, S.M., Gerstner, D.G., Brenner, B., Bünger, J., Eikmann, T., Janssen, B., Kolb, S., Kolk, A., Nowak, D. and et al. (2015). Evaluation of exposure–response relationships for health effects of microbial bioaerosols–a systematic review. Int. J. Hyg. Envir. Heal.., 218:577-89.
Wang, J., Kim, S.C. AND Pui, D.Y. (2008). Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. J. Aerosol. Sci., 39:323-34.
Yu, H., Jiao, Z., Hu, H., Lu, G., Ye, J. and Bi, Y. (2013). Fabrication of Ag 3 PO 4–PAN composite nanofibers for photocatalytic applications. CrystEngComm., 15:4802-05.
Zhang, Q., Damit, B., Welch, J., Park, H., Wu, C.Y. and Sigmund, W. (2010). Microwave assisted nanofibrous air filtration for disinfection of bioaerosols. J. Aerosol. Sci., 41:880-88. | ||
آمار تعداد مشاهده مقاله: 1,688 تعداد دریافت فایل اصل مقاله: 1,214 |