تعداد نشریات | 161 |
تعداد شمارهها | 6,486 |
تعداد مقالات | 70,064 |
تعداد مشاهده مقاله | 123,047,503 |
تعداد دریافت فایل اصل مقاله | 96,281,341 |
Study of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium | ||
Pollution | ||
مقاله 8، دوره 6، شماره 1، فروردین 2020، صفحه 87-98 اصل مقاله (413.97 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2019.286098.656 | ||
نویسندگان | ||
R. Kumar1؛ A. Chatterjee2؛ M. K. Singh* 3؛ V. P. Singh4 | ||
1Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India, | ||
2Department of Mathematics, The Neotia University, Diamond Harbour, West Bengal, India. | ||
3Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India | ||
4Department of Biological and Agricultural Engineering & Zachry Department Civil Engineering, Texas A and M University, 321 Scoates Hall, 2117 TAMU, College Station Texas 77843-2117 USA. | ||
چکیده | ||
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initially the aquifer is assumed contaminant free and an additional source term is considered at the inlet boundary. A flux type boundary condition is considered in the semi-infinite part of the domain. Laplace transform technique (LTT) is then applied to obtain a closed form analytical solution. The effect of source/sink term as a function in the one-dimensional advection-dispersion equation is explained through the graphical representation for the set of input data based on similar data available in hydrological literature. Matlab software is used to obtain the graphical representation of the obtained solution. The obtained analytical solution of the proposed model may be helpful in the groundwater hydrology areas. | ||
کلیدواژهها | ||
Aquifer؛ Advection؛ dispersion؛ Contamination؛ Source-Sink | ||
مراجع | ||
Akbarpour, S., and Niksokhan, M.H. (2018). Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Environ. Monit. Assess., 190(10); 579. Amin, M.M., Veith, T.L., Collick, A.S., Karsten, H.D. and Buda, A.R. (2017). Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agric. Water Management, 180; 212-223. Aral, M.M. and Liao, B. (1996). Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J. Hydrol. Eng., 1(1); 20-32. Bai, B., Li, H., Xu, T. and Chen, X. (2015). Analytical solutions for contaminant transport in a semi-infinite porous medium using the source function method. Comput. Geotech., 69; 114-123. Balla, K., Kéri, G., and Rapcsák, T. (2002). Pollution of underground water: a computational case study using a transport model. J. Hydroinform., 4(4); 255-263. Bauer, M., Fulda, B., and Blodau, C. (2008). Groundwater derived arsenic in high carbonate wetland soils: Sources, sinks, and mobility. Sci. Total Environ., 401(1); 109-120. Chatterjee, A. and Singh, M.K (2018). Two-dimensional advection-dispersion equation with depth-dependent variable source concentration. Pollut., 4(1); 1-8. Chen, J.S. and Liu, C.W. (2011). Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Syst. Sci., 15(8); 2471-2479. De Smedt, F., Brevis, W. and Debels, P. (2005). Analytical solution for solute transport resulting from instantaneous injection in streams with transient storage. J. Hydrol., 315(1); 25-39. Freeze, R.A. and Cherry, J.A. (1979). Groundwater Prentice-Hall International. New Jersey: Englewood Cliffs. Golz, W.J. and Dorroh, J.R. (2001). The convection-diffusion equation for a finite domain with time varying boundaries. App. Math. letters, 14(8); 983-988. Jia, X., Zeng, F. and Gu, Y. (2013). Semi-analytical solutions to one-dimensional advection–diffusion equations with variable diffusion coefficient and variable flow velocity. App. Math. Comput., 221; 268-281. Kral, U., Brunner, P.H., Chen, P.C. and Chen, S.R. (2014). Sinks as limited resources? A new indicator for evaluating anthropogenic material flows. Ecol. Indic., 46; 596-609. Leij, F.J., Priesack, E. and Schaap, M.G. (2000). Solute transport modeled with Green's functions with application to persistent solute sources. J. Contam. Hydrol., 41(1); 155-173. Logan, J.D. and Zlotnik, V. (1995). The convection-diffusion equation with periodic boundary conditions. App. Math. Letters, 8(3); 55-61. Moutsopoulos, K.N., Poultsidis, V.G., Papaspyros, J.N. and Tsihrintzis, V.A. (2011). Simulation of hydrodynamics and nitrogen transformation processes in HSF constructed wetlands and porous media using the advection–dispersion-reaction equation with linear sink-source terms. Ecol. Eng., 37(9); 1407-1415. Natarajan, N. and Kumar, G.S. (2017). Spatial moment analysis of multispecies contaminant transport in porous media. Environ. Eng. Res., 23(1); 76-83. Nemitz, E., Sutton, M.A., Gut, A., San José, R., Husted, S. and Schjoerring, J.K. (2000). Sources and sinks of ammonia within an oilseed rape canopy. Agric. For. Meteorol., 105(4); 385-404. Sander, G.C. and Braddock, R.D. (2005). Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media. Adv. Water Resour., 28(10); 1102-1111. Shi, X., Lei, T., Yan, Y. and Zhang, F. (2016). Determination and impact factor analysis of hydrodynamic dispersion coefficient within a gravel layer using an electrolyte tracer method. Int. Soil and Water Conser. Res., 4(2); 87-92. Singh, M.K. and Kumari, P. (2014). Contaminant concentration prediction along unsteady groundwater flow. Modelling and Simulation of Diffusive Processes, Series: Simulation Foundations, Methods and Applications. Springer. XII. 257-276. Singh, M. K., Singh, V. P. and Das, P. (2015). Mathematical modeling for solute transport in aquifer. J. Hydroinform., 18(3), 481-499. Srinivasan, V. and Clement, T.P. (2008). Analytical solutions for sequentially coupled one-dimensional reactive transport problems–Part I: Mathematical derivations. Adv. Water Resour., 31(2); 203-218. Thakur, C.K., Chaudhary, M., van der Zee, S.E.A.T.M. and Singh, M.K. (2019). Two dimensional solute transport with exponential initial concentration distribution and varying flow velocity. Pollut., 5(4); 721-737. Tkalich, P. (2006). Derivation of high-order advection-diffusion schemes. J. Hydroinform., 8(3); 149-164. Van Genuchten, M.T. (1981). Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol., 49(3-4); 213-233. Van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A. and Pontedeiro, E.M. (2013). Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61(2); 146-160. Van Hecke, M., Storm, C. and van Saarloos, W. (1999). Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems. Physica D: Nonlinear Phenomena. 134(1); 1-47. van Kooten, J.J. (1994). Groundwater contaminant transport including adsorption and first order decay. Stochastic Hydrol. and Hydraul., 8(3); 185-205. Wang, J., Shao, M.A., Huang, L. and Jia, X. (2017). A general polynomial solution to convection–dispersion equation using boundary layer theory. J. Earth Syst. Sci., 126(3); 40. West, M.R., Kueper, B.H. and Novakowski, K.S. (2004). Semi-analytical solutions for solute transport in fractured porous media using a strip source of finite width. Adv. Water Resour., 27(11); 1045-1059. You, K. and Zhan, H. (2013). New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources. J. Hydrol., 487; 87-97. Zieger, S., Babanin, A.V., Rogers, W.E. and Young, I.R. (2015). Observation based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96; 2-25. | ||
آمار تعداد مشاهده مقاله: 950 تعداد دریافت فایل اصل مقاله: 851 |