تعداد نشریات | 161 |
تعداد شمارهها | 6,486 |
تعداد مقالات | 70,064 |
تعداد مشاهده مقاله | 123,047,430 |
تعداد دریافت فایل اصل مقاله | 96,281,293 |
Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte | ||
Pollution | ||
مقاله 7، دوره 6، شماره 1، فروردین 2020، صفحه 79-86 اصل مقاله (517.98 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2019.285668.651 | ||
نویسندگان | ||
K. Singh* 1؛ . Dharmendra2 | ||
1NIT Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, Himachal Pradesh, India | ||
2Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, Himachal Pradesh, India | ||
چکیده | ||
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i.e., catholyte, electrodes, and initial COD concentration. Sodium chloride was used as catholyte and graphite rods were used as both electrodes. The sodium chloride concentrations in the cathode and initial chemical oxygen demand have also been optimized. The optimum sodium chloride of 70 mM in the cathode solution generates the maximum power density of 408.98μW/m2. As the sodium chloride concentration increases in catholyte, the capacity for power production also increases. The voltage output of Microbial fuel cell increases when the initial concentration of chemical oxygen demand increases to a peak value of 1500 mg/l and if the value exceeds this limit, the performance of Microbial fuel cell (in terms of voltage) starts decreasing. The chemical oxygen demand removal efficiency of a microbial fuel cell with simple graphite electrode and graphite electrodes with coated iron were 79% and 90% respectively. | ||
کلیدواژهها | ||
COD Removal؛ Electricity generation؛ Catholyte؛ Wastewater treatment؛ MFC | ||
مراجع | ||
Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 22(9): 477-485. Barua, P.K. and Deka, D. (2010). Electricity generation from biowaste based microbial fuel cells. Int. J. Energy Info. Commun., 1(1): 77-92. Bhowmick, G.D., Das, S., Verma, H.K., Neethu, B. and Ghangrekar, M.M. (2019). Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochim. Acta, 310: 173-183. Chaturvedi, V. and Verma, P. (2016). Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. BIOB, 3(1): 38. Cheng, S. and Logan, B.E. (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492-496. Chu, S. and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411): 294-303. Daniel, D.K., Mankidy, B.D., Ambarish, K. and Manogari, R. (2009). Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int. J. Hydrog. Energy, 34(17): 7555-7560. Das, S. and Ghangrekar, M.M. (2019). Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell. Environ. Technol., 1-8. Deng, Q., Li, X., Zuo, J., Ling, A. and Logan, B.E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources, 195(4): 1130-1135. Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L. and Bergel, A. (2007). Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim. acta, 53(2): 468-473. Goswami, R. and Mishra, V.K. (2018). A review of design, operational conditions and applications of microbial fuel cells. Biofuels, 9(2): 203-220. Iranpour, R., Stenstrom, M., Tchobanoglous, G., Miller, D., Wright, J. and Vossoughi, M. (1999). Environmental engineering: energy value of replacing waste disposal with resource recovery. Science, 285(5428): 706-711. Jadhav, D. A., Ghadge, A. N., Mondal, D., & Ghangrekar, M. M. (2014). Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresource technology, 154, 330-335. Kumar, A., Kumar, N., Baredar, P. and Shukla, A. (2015). A review on biomass energy resources, potential, conversion and policy in India. Renewable Sustainable Energy Rev., 45: 530-539. Kumar, S.S., Basu, S. and Bishnoi, N.R. (2017). Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell. Biochem. Eng. J., 121: 17-24. Larminie, J., Dicks, A. and McDonald, M.S. (2003). Fuel cell systems explained (Vol. 2). Chichester, UK: J. Wiley. Li, S. and Chen, G. (2017). Effects of evolving quality of landfill leachate on microbial fuel cell performance. Waste Manage. Res., 36(1): 59-67. Li, S. and Chen, G. (2018). Factors affecting the effectiveness of bioelectrochemical system applications: Data synthesis and meta-analysis. Batteries, 4(3): 34. Li, S., Chen, G. and Anandhi, A. (2018). Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. Energies, 11(11): 2951. Lin, C.W., Wu, C.H., Chiu, Y.H. and Tsai, S.L. (2014). Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel, 125, 30-35. Liu, H. and Logan, B.E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. technol., 38(14): 4040-4046. Lu, N., Zhou, S.G., Zhuang, L., Zhang, J.T. and Ni, J.R. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J., 43(3): 246-251. Lv, Z., Xie, D., Yue, X., Feng, C. and Wei, C. (2012). Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J. Power Sources, 210: 26-31. Neethu, B., Pradhan, H., Sarkar, P., and Ghangrekar, M.M. (2019). Application of ion exchange membranes in enhancing algal production alongside desalination of saline water in microbial fuel cell. MRS Advances, 4(19), 1077-1085. Oji, A., Opara, C.C. and Oduola, M.K. (2012). Fundamentals and Field Application of Microbial Fuel cells (MFCs). Euro. J. Appl. Eng. Sci. Res, 1(4): 185-189. Pandey, B.K., Mishra, V. and Agrawal, S. (2011). Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. Int. J. Eng. Sci. Technol., 3(4): 42-47. Pradhan, H. and Ghangrekar, M.M. (2019). Effect of Cathodic Electron Acceptors on the Performance of Microbial Desalination Cell. In Waste Water Recycling and Management(pp. 305-315). Springer, Singapore. Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. and Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88(11): 3999-4004. Rodrigo, M.A., Cañizares, P., García, H., Linares, J.J. and Lobato, J. (2009). Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource technology, 100(20), 4704-4710. Santoro, A., Rimassa, L., Borbath, I., Daniele, B., Salvagni, S., Van Laethem, J.L. and Miles, S. (2013). Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. The lancet oncology, 14(1): 55-63. Santoro, C., Arbizzani, C., Erable, B. and Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources, 356: 225-244. Slate, A.J., Whitehead, K.A., Brownson, D.A. and Banks, C.E. (2019). Microbial fuel cells: An overview of current technology. Renewable Sustainable Energy Rev., 101: 60-81. Wang, X., Gao, N., Zhou, Q., Dong, H., Yu, H. and Feng, Y. (2013). Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells. Bioresour. technol., 144: 632-636. Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J.R., Chen, W. and Cui, Y. (2012). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci., 5(1): 5265-5270. Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Chang, S.W., Nguyen, D.D., Ren, J., Liu, Y. and Zhang, X. (2019). Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chem. Eng. J., 358: 236-242. Yuan, Y. and Kim, S.H. (2008). Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. B. Korean Chem. Soc., 29(7): 1344-1348. Zhang, F., Jacobson, K. S., Torres, P., & He, Z. (2010). Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy & Environmental Science, 3(9), 1347-1352. Zhang, Y., Sun, J., Hu, Y., Li, S. and Xu, Q. (2012). Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrog. Energy, 37(22): 16935-16942. Zhou, M., Wang, H., Hassett, D.J. and Gu, T. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J. Chem. Technol. Biotechnol., 88(4): 508-518. | ||
آمار تعداد مشاهده مقاله: 1,458 تعداد دریافت فایل اصل مقاله: 1,201 |