تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,089,193 |
تعداد دریافت فایل اصل مقاله | 97,192,296 |
Malignant Melanoma in a Female Mallard Duck (Anas platyrhynchos) | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 10، دوره 13، شماره 4، دی 2019، صفحه 437-443 اصل مقاله (5.72 M) | ||
نوع مقاله: Pathology - Clinical Pathology | ||
شناسه دیجیتال (DOI): 10.22059/ijvm.2019.280979.1004986 | ||
نویسندگان | ||
Farhang Sasani1؛ Hosein Ali Arab2؛ Seyed Hossein Mardjanmehr1؛ Sara Shokrpoor* 1؛ Hamid Reza Fakhri moghadam3؛ Diba golchin3 | ||
1Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran | ||
2Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran | ||
3Graduated from the Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran | ||
چکیده | ||
Melanomas are malignant neoplasms originating from melanocytes. They reported in birds. In this case, macroscopic and microscopic (the histopathologic and IHC) findings supported a final diagnosis of cutaneous malignant melanoma in a mallard duck (Anas platyrhynchos). A female mallard duck (Anas platyrhynchos) was observed with a mass on the ventral portion of the neck. The bird was anes- thetized with Diazepam/Ketamine. A skin incision was made on the ventral surface of the mass and blunt dissection was performed to separate the mass. The incision was sutured by a simple interrupted suture pattern. Mass was surgically excised for histopathological evaluation. Histologically, the mass was composed of nests and sheets of anaplastic, epithelioid, multinucleated and polygonal cells con- taining variable amounts of brown to black granules of melanin. The neoplasm showed immunoreactiv- ity for S-100 and Melan-A in the cytoplasm of the neoplastic cells. Based on the histopathological and IHC findings, this is the first report of malignant melanoma in a mallard duck (Anas platyrhynchos). | ||
کلیدواژهها | ||
Anas platyrhynchos؛ Female؛ IHC؛ malignant melanoma؛ mallard duck | ||
اصل مقاله | ||
Case HistoryMelanomas are malignant neoplasm orig- inating from melanocytes (Nishiya et al., 2016). They have been described in mam- malians, reptiles and fishes (Kimberly et al 2015; Rahmati-Holasoo et al., 2015; Nishiya et al., 2016). These tumors were less commonly reported in birds. How- ever, they have been identified in a vari- ety of avian species, including African grey parrot (Psittacus erithacus erithacus) (Shrader et al., 2016), thick-billed parrot (Rhynchopsitta pachyrhyncha) (Guthrie et al., 2010), zebra finch (Taeniopygia gut- tata) (Irizarry-Rovira et al., 2007), seagull (Larus fuscus) (Costagliola et al., 2001), mandarin duck (Aix galericulata) (Reid et al., 1993), merlin (Falco columbarius) (Barlow and Girling, 2004), rock hopper penguin (Eudyptes chrysocome) (Duncan et al., 2014), macaroni penguin (Eudyptes chrysolophus) (Duncan et al., 2014), and Humboldt penguin (Spheniscus humboldti) (Duncan et al., 2014). In this report, we de- scribe cutaneous malignant melanoma in a mallard duck (Anas platyrhynchos).
Clinical Presentation
In August 2018, a 2-year-old female mal- lard duck (Anas platyrhynchos), at the Qaz- vin nature village was observed with a large palpable and firm mass on the ventral por- tion of the neck (Fig. 1a). Within the previ- ous 1-month period the mass had become distinct and grew larger. No other physical abnormalities were seen. On presentation, the bird was quiet and alert. Appetite and stool appearance were normal. The duck was fed a diet of seeds and plants. Final- ly, surgical removal of the neoplasm was elected. The bird was anesthetized with
Diazepam/Ketamine. A skin incision was made on the ventral surface of the mass and blunt dissection was performed to separate the mass. The incision was sutured by a simple interrupted suture pattern. The mass was removed for histopathological evalu- ation and the bird recovered uneventfully. Enrofloxacin (10 mg/kg IM, once daily for 5 days) was administered IM.
Diagnostic Testing
On gross examination, the mass was firm, black and 10 × 7/5 × 3 cm in size. Tissue samples of the mass were fixed in 10% neutral buffered formalin and routinely processed, dehydrated and embedded in paraffin wax, sectioned at 5 μm thickness (Rotary Microtome RM2 145; Leica) and stained with hematoxylin-eosin (H&E). Additional sections were probed immuno- histochemically for S-100 and Melan-A as described previously (Ramos-Vara et al., 2000). Histopathologically, the mass was mainly composed of infiltrative, pigment- ed melanocytes that extended from superfi- cial to deep dermal regions and had effaced normal tissue architecture (Fig. 1b-c). In the superficial dermis, the neoplastic me- lanocytes were arranged in various sizes of nests and lobules (Fig. 1b). The neoplastic cells coalesced in the deep dermis, forming dense sheets separated by collagenous stro- ma (Fig. 1c).
Microscopic examination of the sections revealed anaplastic, epithelioid, round to oval to polygonal cells, ranging in size from 18 µm to 90 µm in diameter (giant cells), with eosinophilic cytoplasm containing variable amounts of brown to black gran-
Fig 1. (a) The mass on the ventral portion of the neck. (b-f): Histopathological sections of Melan ma, hmatoxylin and eosin. (b) Variably sized nests of neoplastic cells in the dermis (4x). (c) Dense sheets of the neoplastic melanocytes in the deep dermis. S: stroma (10x) (d) The cytoplasm of cells containing variable amounts of brown to black granules of melanin (40x). (e) Round (large arrowhead) to oval (small arrow) to pleomorphic (large arrow) nuclei with four prominent nucle- oli (small arrowhead) (60x). (f). Pleomorphic cells (arrow and arrowhead). Inset: multinucleated giant cell (arrow) (60x).
Fig . 2. (a-b): Histopathological sections of Melanoma, hematoxylin and eosin. (a) multinucleated giant cell (arrow) (60x). (b) The mitotic figure (arrowhead) is lesser that 10 in HPF (60x). (c-d): IHC, Immunoreactivity for Melan-A (c) and S-100 (d) in the cytoplasm of the neoplastic cells (40x)
ules of melanin (Fig. 1d). The nuclei were round to oval to pleomorphic, ranging from 8 µm to 45 µm in diameter with one to four prominent nucleoli (Fig. 1e). Markedly multinucleated, pleomorphic and bizarre- ly shaped cells were also seen. Scattered multinucleated giant cells contained up to 4 nuclei (Fig. 1f, 2a). The number of mitot- ic figures per 10 high-power fields varied from 3-5 throughout the entire tumor (Fig. 2b). The mass showed more than 80% im- munoreactivity for S-100 and Melan-A in the cytoplasm of the neoplastic cells. The histopathologic and IHC findings support- ed a final diagnosis of cutaneous malignant melanoma. The mallard duck suddenly died and internal tissues of the bird were not available for examination.
Assessments
Avian melanoma may originate from the skin, liver, lung, beak, eyes, and adrenal glands, and is usually reported to be malig- nant (Reid et al., 1993; Barlow and Girling, 2004; Irizarry-Rovira et al., 2007). Similar to present case, malignant melanomas tend to be fast-growing tumors, and often are pigmented (grey, brown, or black). Me- lanocytic tumors vary in size from small, pigmented macules, to larger masses which
may be 5 cm or more in diameter (Gold- schmidt and Goldschmidt, 2017). Large size of melanoma is considered poor prognostic factor (Smith et al., 2002). In dogs, melano- mas that have at least 1 cm diameter are de- scribed as malignant neoplasms (Meyrer et al., 2016). Additionally, in mandarin duck, neoplasm over 4 cm in diameter was diag- nosed as a malignant melanoma (Reid et al., 1993). Large size of the cutaneous mass in the present study supports malignant be- havior of this neoplasia. The marked cellu- lar pleomorphism of the melanoma in our case, which warrants description of an an- aplastic malignant melanoma, is similar to other cases of avian malignant melanomas (Irizarry-Rovira et al., 2007; Goldschmidt and Goldschmidt, 2017). Also, the ma- jority of cutaneous malignant melanomas similar to this case have nuclear atypia and multiple nucleoli (Goldschmidt and Gold- schmidt, 2017). As in the present report, some avian melanomas may be pleomor- phic in histologic sections, contain bizarre neoplastic cells, and/or contain multinu- cleated cells (Irizarry-Rovira et al., 2007). Nuclear atypia is a common term used by pathologists to help classify neoplastic le- sions (i.e., benign versus malignant) (Gold- schmidt and Goldschmidt, 2017). In ani- mal, skin melanocytic neoplasms, the most reliable histologic feature for distinguish- ing malignant from benign is the mitotic in- dex (Goldschmidt and Goldschmidt, 2017). In this case, the number of mitotic figures per 10 high-power fields varied from 3-5. In the World Health Organization’s Histo- logic Classification of Epithelial and Mela- nocytic Skin Tumors of Domestic Animals (Smith et al., 2002), three or more mitotic figures per 10 high-power fields indicate malignancy. The majority of melanocyt- ic neoplasms are easily recognized by the presence of melanin pigment in combina- tion with histologic features (Goldschmidt and Goldschmidt, 2017). S-100 remains the most sensitive marker for melanocyt- ic lesions, while markers such as Melan-A demonstrate relatively good specificity but not as good as S-100. However, in dogs, Melan-A is highly sensitive and specif- ic for detecting melanocytic neoplasms, whereas S-100 has poor specificity (Smed- ley et al., 2011). S-100 and Melan-A have not been reliable markers for melanocytic neoplasms in several avian species, includ- ing the domestic chicken, zebra finch, and cormorant (Phalacrocorax carbo) (Reid et al., 1993; Irizarry-Rovira et al., 2007; Wil- liams et al., 2011). Even more interesting, immunohistochemical findings similar to the melanoma diagnosed in the mallard duck were described in a seagull (Larus fuscus) and showed moderate immunore- activity for S-100 in the cytoplasm of 80% of the neoplastic cells and marked intra- cytoplasmic positivity for Melan-A in all neoplastic cells (Costagliola et al., 2011). Regardless of the species, malignant mela- nomas have similar biological behavior in that they frequently recur and have a high rate of metastasis (Reid et al., 1993; Smith et al., 2002). The regrowth of malignant melanomas occurs after surgery. We were unable to find the cause of death. However, it appears regrowth of neoplasia and metas- tasis after surgery could be reasons for the duck’s death. The etiology of spontaneous melanomas remains unknown in most spe- cies (Smith et al., 2002). The major risk factors for human melanoma include fam- ily history, skin and mucosal pigmentation characteristics, sun exposure, particularly to ultraviolet B-rays (UVB) (Nishiya et al.,
2016). Several etiological factors are sup- posed to be involved in canine malignant melanomas, including consanguinity, trau- ma, chemical exposure, hormones, and ge- netic susceptibility (Nishiya et al., 2016). It is possible that melanomas in birds are the result of spontaneous neoplastic trans- formation (Shrader et al., 2016). On the basis of the macroscopic and microscopic characteristics, the cause of this neoplasm remains unknown. However, chemical car- cinogens or genetic influences appear to be the explanation for this lesion.
Acknowledgments
The authors would like to thank Mr. Nader Reza Noori.
Conflicts of InterestThe authors declare that there are no con- flicts of interest. | ||
مراجع | ||
Barlow, A.M., Girling, T.R. (2004). Malignant melanoma in a merlin (Falco columbarius). Vet Rec. 154 (22), 696-697. PMID: 15200078
Costagliola, A., Britti, D., Russo, V., Meomartino, L., Castagna, F., Giordano, D., Insabato, L., Paciello, O. (2011). Malignant melanoma in a seagull (Larus fuscus): morphological and im- munohistochemical approach. Avian Dis. 55(1), 147-150. https://doi.org/10.1637/9576-
101510-Case.1 PMID: 21500653
Duncan, A.E., Smedley, R., Anthony, S., Garner,
M.M. (2014). Malignant melanoma in the penguin: characterization of the clinical, his- tologic, and immunohistochemical features of malignant melanoma in 10 individuals from three species of penguin. J Zoo Wildl Med. 45 (3), 534-549. https://doi.org/10.1638/2013- 0207R1.1 PMID: 25314820
Goldschmidt, M.H., Goldschmidt, K.H. (2017).
Epithelial and Melanocytic Tumors of the Skin. In:. Tumors in Domestic Animals ,Meuten DJ, (ed),5th ed. Wiley Blackwell. Ames, IA, USA,129-131.
Guthrie, A.L., Gonzalez-Angulo, C., Wigle, W.L., deMaar, T.W. (2010). Radiation thera- py of a malignant melanoma in a thick-billed parrot (Rhynchopsitta pachyrhyncha). J Avi- an Med Surg. 24(4), 299-307. https://doi.
org/10.1647/2009-007.1 PMID: 21302760 Irizarry-Rovira, A.R., Lennox, A.M., Ramos-Vara, J.A. (2007). Malignant melanoma in a zebra finch (Taeniopygia guttata): cytologic, histo- logic, and ultrastructural characteristics. Vet Clin Pathol. 36(3), 297-302. PMID: 17806082 Kimberly, A., Campbell, T.M., Levens, G., Ag- new, D. (2015). Bilaterally symmetrical oral amelanotic melanoma in a boa constrictor (Boa constrictor constrictor). J Zoo Wildlife Med. 46(3), 629-632. https://doi.org/10.1638/2015-
0028.1 PMID: 26352976
Meyrer, B., Bianchi, S.P., Pavarini, S.P., Gerardi, D.G. (2016). Congenital cutaneous melanoma in a dog. Vet Dermatol. 28 (2), 228-234. https:// doi.org/10.1111/vde.12391 PMID: 27813258 Nishiya, A.T., Massoco, C.O., Felizzola, C.R., Per- lmann, E., Batschinski, K., Tedardi, M.V., Gar- cia, J.S., Mendonça, P.P., Teixeira, T.F., Zaidan Dagli, M.L. (2016). Comparative Aspects of Canine Melanoma. Vet Sci, 3(1), 7. https://doi. org/10.3390/vetsci3010007 PMID: 29056717
Rahmati-holasoo, H., Alishahi, M., Shokrpoor, S., Jangarannejad, A., Mohammadian, B. (2015). Invasion of melanoma to angiolipoma in a male Siamese fighting fish, Betta splendens, Regan. J Fish Dis. 38, 925-930. https://doi. org/10.1111/jfd.12301 PMID: 25271738
Ramos-Vara, J.A., Beissenherz, M.E., Miller, M.A., Johnson, G.C., Pace, L.W., Fard, A., Kottler, S.J. (2000). Retrospective study of 338 canine oral melanomas with clinical, his- tologic, and immunohistochemical review of 129 cases. Vet Pathol, 37, 597-608. https://doi.
org/10.1354/vp.37-6-597 PMID: 11105949 Reid, H.A.C., Herron, A.J., Hines, M.E., Miller, C., Altman, N.H. (1993). Metastatic malignant
melanoma in a mandarin duck (Aix galeric- ulata). Avian Dis. 37(4), 1158-1162. PMID:
8141749
Smedley, R.C., Lamoureux, J., Sledge, D.G., Ki- upel, M. (2011). Immunohistochemical diag- nosis of canine oral amelanotic melanocytic neoplasms. Vet Pathol. 48, 32-40. https://doi. org/10.1177/0300985810387447 PMID: 21078882
Smith, S.H., Goldschmidt, M.H., McManus, P.M. (2002). Acomparative review of melanocytic neo- plasms. Vet Pathol. 39 (6), 651-678. https://doi.
org/10.1354/vp.39-6-651 PMID: 12450197
Shrader, T.C., Carpenter, J.W., Cino-Ozuna, A.G., Andrews, G.A. (2016). Malignant melanoma of the syrinx and liver in an African grey parrot (Psittacus erithacus erithacus). J Avian Med Surg. 30(2), 165-171. https://doi.org/10.1647/2014-
071 PMID: 27315385
Williams, S.M., Zavala, G., Hafner, S., Collett, S.R., Cheng, S. (2011). Metastatic melanomas in young broiler chickens (Gallus gallus do- mesticus). Vet Pathol. 49, 288-291. https://doi. org/10.1177/0300985811415706 PMID: 21825310
| ||
آمار تعداد مشاهده مقاله: 1,364 تعداد دریافت فایل اصل مقاله: 590 |