تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,120 |
تعداد دریافت فایل اصل مقاله | 97,232,418 |
ارزیابی عملکرد روشهای ماشینبردار پشتیبان و سیستم استنتاج عصبی فازی تطبیقی در پیشبینی جریان ماهانه رودخانهها (مطالعه موردی رودخانههای نازلو و سزار) | ||
تحقیقات آب و خاک ایران | ||
مقاله 11، دوره 51، شماره 3، خرداد 1399، صفحه 673-686 اصل مقاله (1.6 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.290994.668356 | ||
نویسنده | ||
فرشاد احمدی* | ||
استادیار گروه هیدرولوژی و مهندسی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
در سالهای اخیر با رشد فناوری، روشهای نوین برای حل مسائل غیرخطی نظیر پیشبینی جریان رودخانهها به صورت قابل ملاحظهای توسعه یافته است. از جمله روشهایی که اخیراً توسط محققان مختلف در این زمینه مورد استفاده قرار گرفته است مدلهای ماشین بردار پشتیبان (SVM) و سیستم استنتاج عصبی فازی تطبیقی (ANFIS) میباشد. در این مطالعه از روشهای مذکور برای پیشبینی جریان ماهانه رودخانههای نازلوچای و سزار در دوره آماری 1395-1335 استفاده شد. در ابتدا الگوهای ورودی در دو حالت الف) استفاده از دادههای جریان و در نظر گرفتن نقش حافظه و ب) تاثیر دادن ترم پریودیک آماده و به مدلها معرفی گردید. مدلسازی براساس 80 درصد دادههای تاریخی ثبت شده صورت گرفت (576 ماه) و با 20 (144 ماه) درصد بقیه ارزیابی گردید. عملکرد مدلهای به کار رفته با شاخصهای آماری مجذور میانگین مربعات خطا (RMSE)، نش- ساتکلیف (NS) و میانگین قدر مطلق خطای نسبی (MARE)، مورد بررسی قرار گرفت. نتایج حاصل نشان داد که روش SVM با تابع کرنل RBF بیشترین دقت را در پیشبینی جریان ماهانه هر دو رودخانه داشته و استفاده از ترم پریودیک توانسته است عملکرد آن را به طور قابل ملاحظهای افزایش دهد. همچنین کارایی مدل ANFIS نیز با استفاده از ترم پریودیک بهبود یافته و در محل ایستگاه تپیک در الگوی M7 و برای جریان رودخانه سزار با الگوی M6 کمترین خطا را در پیشبینی جریان داشته است. به طور کلی نتایج این مطالعه نشان داد که روش SVM از عملکرد بهتری نسبت به مدل ANFIS در پیشبینی جریان برخوردار بوده و انتخاب تابع کرنل مناسب تاثیر مستقیمی بر کارایی آن دارد. | ||
کلیدواژهها | ||
اثر پریودیک؛ تابع خود همبستگی جزئی؛ تابع عضویت؛ تابع کرنل | ||
مراجع | ||
Babaei, M., Moeini, R. & Ehsanzadeh, E. (2019). Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir). Water Resources Management, 33(6), 2203-2218. Bafitlhile, T.M. & Li, Z. (2019). Applicability of ε-Support Vector Machine and Artificial Neural Network for Flood Forecasting in Humid, Semi-Humid and Semi-Arid Basins in China. Water, 11(1), 85-96. Chen, Q. Dai, G. & Liu, H. (2002). Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. Journal of Hydraulic Engineering, 128(7), 683-688. Chen, S.T. & Yu, P.S. (2007). Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340(1-2), 63-77. Dehghani, M., Seifi, A., & Riahi-Madvar, H. (2019). Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and Grey Wolf optimization. Journal of Hydrology. Falehi, A. D. (2018). MOPSO based TCSC–ANFIS–POD technique: Design, simultaneous scheme, power system oscillations suppression. Journal of Intelligent & Fuzzy Systems, 34(1), 23-34. Foroudi Khowr, A., Saneie, M. & Azhdari Moghaddam, M. (2017). Comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Support Vector Machines (SVM) for discharge capacity prediction of a sharp-crested weirs. Iranian Journal of Irrigation & Drainage, 11(5), 772-784. (In Farsi) Isazadeh, M., ahmadzadeh, H. & Ghorbani, M. (2016). Assessment of Kernel Functions Performance in River Flow Estimation using Support Vector Machine. Journal of Water and Soil Conservation, 23(3), 69-89. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685. (In Farsi) Khazaee Poul, A. K., Shourian, M., & Ebrahimi, H. (2019). A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction. Water Resources Management, 1-17. Kia, I., Emadi, A., Gholami, M. (2019). Rainfall-Runoff Modeling by Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multi-Variable Linear Regression (MLR). Irrigation and Water Engineering, 9(4), 39-51. (In Farsi) Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442, 23-35. Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559-570. Mozaiyan, M., Akhoond Ali, A., Massah Bavani3, A., Radmanesh, F., Zohrabi, N. (2015). The Impact of Climate Change on Low Flows (Case Study: Sepid Dasht Sezar). Irrigation Sciences and Engineering, 38(2), 1-19. (In Farsi) Pham, Q. B., Yang, T. C., Kuo, C. M., Tseng, H. W., & Yu, P. S. (2019). Combing Random Forest and Least Square Support Vector Regression for Improving Extreme Rainfall Downscaling. Water, 11(3), 45-59. Rehana, S. (2019). River Water Temperature Modelling Under Climate Change Using Support Vector Regression. In Hydrology in a Changing World (pp. 171-183). Springer, Cham. Rezaei, E., Khashei- Siuki, A., Shahidi, A. (2014). Design of Groundwater Level Monitoring Network, Using the Model of Least Squares Support Vector Machine (LS-SVM). Iranian Journal of Soil and Water Research, 45(4), 389-396. (In Farsi) Riahi-Madvar, H., Dehghani, M., Seifi, A., Salwana, E., Shamshirband, S., Mosavi, A., & Chau, K. W. (2019). Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Engineering Applications of Computational Fluid Mechanics, 13(1), 529-550. Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert systems with applications, 28(1), 127-135. Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York. Wu, J., Liu, H., Wei, G., Song, T., Zhang, C., & Zhou, H. (2019). Flash Flood Forecasting Using Support Vector Regression Model in a Small Mountainous Catchment. Water, 11(7), 13-27. Zaini, N., Malek, M. A., Yusoff, M., Mardi, N. H., & Norhisham, S. (2019). Daily River Flow Forecasting with Hybrid Support Vector Machine–Particle Swarm Optimization. In IOP Conference Series: Earth and Environmental Science (Vol. 140, No. 1, p. 012035). IOP Publishing. Zhou, Y., Guo, S., & Chang, F. J. (2019). Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. Journal of hydrology, 570, 343-355. | ||
آمار تعداد مشاهده مقاله: 766 تعداد دریافت فایل اصل مقاله: 434 |