- Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
- Alves, M. S., Dadalto, S. P., Gonçalves, A. B., de Souza, G. B., Barros, V. A. & Fietto, L. G. (2014). Transcription factor functional protein-protein interactions in plant defense responses. Proteomes, 2(1), 85-106.
- Adhikari, P., Oh, Y. & Panthee, D. R. (2017). Current status of early blight resistance in tomato: an update. International Journal of Molecular Sciences, 18(10), 2019-2041.
- Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. & Höfte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 144(4), 1863-1877.
- Balbi-Peña, M. I., Schwan-Estrada, K. R. F. & Stangarlin, J. R. (2014). Oxidative burst and the activity of defense-related enzymes in compatible and incompatible tomato-Alternaria solani interactions. Semina: Ciências Agrárias, 35(5), 2399-2414.
- Chen, F., Hu, Y., Vannozzi, A., Wu, K., Cai, H., Qin, Y. & Zhang, L. (2018). The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences, 1-25.
- Debona, D., Rodrigues, F. Á., Rios, J. A. & Nascimento, K. J. T. (2012). Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology, 102(12), 1121-1129.
- El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible Faba Bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. The plant pathology journal, 30(4), 355-366.
- Figueiredo, A., Monteiro, F., Fortes, A. M., Bonow-Rex, M., Zyprian, E., Sousa, L. & Pais, M. S. (2012). Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Functional and Integrative Genomics, 12(2), 379-386.
- Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
- Giannopolitis, C. N. & Reis, S. K. (1997). Superoxide dismutase I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
- Grigolli, J. F. J., Kubota, M. M., Alves, D. P., Rodrigues, G. B., Cardoso, C. R., Silva, D. J. H. D. & Mizubuti, E. S. G. (2011). Characterization of tomato accessions for resistance to early blight. Crop Breeding and Applied Biotechnology, 11(2), 174-180.
- Hajianfar, R. & Zarbakhsh, A. (2006). Evaluation of reaction of some cultivars and tomato genotypes to Alternaria tenuissima the causal agent of ring spot. Journal Agriculture Science, 4(13), 61-74. (in Farsi)
- Hameed, A., Akhtar, K. P., Saleem, M. Y. & Asghar, M. (2010). Correlative evidence for peroxidase involvement in disease resistance against Alternaria leaf blight of tomato. Acta Physiologiae Plantarum, 32(6), 1171-1176.
- Jain, D. & Khurana, J. P. (2018). Role of Pathogenesis-Related (PR) proteins in plant defense mechanism. In Molecular Aspects of Plant-Pathogen Interaction (pp. 265-281). Springer, Singapore.
- Joshi, R. K., Megha, S., Rahman, M. H., Basu, U. & Kav, N. N. (2016). A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene, 590(1), 57-67.
- Lin, C. C. & Kao, C. H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil, 216(1), 147-153.
- Lubaina, A. S. & Murugan, K. (2012). Biochemical characterization of oxidative burst during interaction between sesame (Sesamum indicum L.) in response to Alternaria sesami. In Prospects in Bioscience: Addressing the Issues (pp. 243-250). Springer, India.
- Mandal, S., Mitra, A. & Mallick, N. (2008). Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiological and Molecular Plant Pathology, 72(1), 56-61.
- Martinez, B., Bernal, A., Perez, S. & Muniz, Y. (2002). Pathogenic variability of Alternaria solani Sor. isolates. Revista de Protection Vegetal, 17(1), 45-53.
- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.
- Meena, M., Zehra, A., Dubey, M. K., Aamir, M., Gupta, V. K. & Upadhyay, R. S. (2016)ComparativeEvaluation of Biochemical Changes in Tomato(Lycopersicon esculentum Mill.)Infected by Alternaria alternata and Its Toxic Metabolites(TeA, AOH, and AME). Front Plant Science, 7, 1408.
- Mukherjee, A. K., Horwitz, B. A., Gepstein, S. & Lev, S. (2009). A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC Plant Biology, 9(1), 31-42.
- Nikraftar, F., Taheri, P., Rastegar, M. F. & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74-83.
- Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45-51.
- Ray, S., Mondal, S., Chowdhury, S. & Kundu, S. (2015). Differential responses of resistant and susceptible tomato varieties to inoculation with Alternaria solani. Physiological and Molecular Plant Pathology, 90, 78-88.
- Salim, A. P., Saminaidu, K., Marimuthu, M., Perumal, Y., Rethinasamy, V., Palanisami, J. R. & Vadivel, K. (2011). Defense responses in tomato landrace and wild genotypes to early blight pathogen Alternaria solani infection and accumulation of pathogenesis-related proteins. Archives of Phytopathology and Plant Protection, 44(12), 1147-1164.
- Shahbazi, H., Aminian, H., Sahebani, N. & Halterman, D. A. (2010). Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathology, 100(5), 454-459.
- Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1, 1-26.
- Shi, H., Cui, R., Hu, B., Wang, X., Zhang, S., Liu, R. & Dong, H. (2011). Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis. Physiological and Molecular Plant Pathology, 76(2), 90-95.
- Shinde, B. A., Dholakia, B. B., Hussain, K., Aharoni, A., Giri, A. P. & Kamble, A. C. (2018). WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnology Journal, 16(8), 1502-1513
- Tang, Y., Kuang, J. F., Wang, F. Y., Chen, L., Hong, K. Q., Xiao, Y. Y.,and Chen, J. Y. (2013). Molecular characterization of PR and WRKY genes during SA-and MeJA-induced resistance against Colletotrichum musae in banana fruit. Postharvest Biology and Technology, 79, 62-68.
- Taheri, P., Irannejad, A., Goldani, M. & Tarighi, S. (2014). Oxidative burst and enzymatic antioxidant systems in rice plants during interaction with Alternaria alternata. European Journal of Plant Pathology, 140(4), 829-839.
- Upadhyay, P., Rai, A., Kumar, R., Singh, M. & Sinha, B. (2014). Differential expression of pathogenesis related protein genes in tomato during inoculation with Alternaria solani. Journal of Plant Pathology and Microbiology, 5(1), 752-753.
- Youssef, S. A., Tartoura, K. A. & Greash, A. G. (2018). Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection, Physiological and Molecular Plant Pathology. (in Press)
|