- Lee, C. Y., Cheng, T. C. E. and Lin, B. M. T. (1993). “Minimizing the Makespan in the-Machine Assembly-Type Flowshop Scheduling Problem”, Management Science, Vol. 39, No. 5, PP. 616-625.
- Al Anzi, F. S., and Allahverdi, A. (2013). “An Artificial Immune System Heuristic for Two-Stage Multi-Machine Assembly Scheduling Problem to Minimize Total Completion Time”, Journal of Manufacturing Systems, Vol. 32, No. 4, PP. 825– 830.
- Allahverdi, A., and Al Anzi, F. S. (2006). “A Branch and Bound Algorithm for Three-Machine Flowshop Scheduling Problem to Minimize Total Completion Time with Separate Setup Times”, European Journal of Operational Research, Vol. 169, No. 3, PP. 767-780.
- Seyedi, I., Maleki Daronkolaei, A., and Kalashi, F. (2012). “Tabu Search and Simulated Annealing for New Three-Stage Assembly Flow Shop Scheduling with Blocking”, Interdisciplinary Journal of Contemporary Research in usiness, Vol. 4, No. 8, PP. 394-402.
- Navaei, J. et al. (2014). “Heuristics for an Assembly Flow Shop with Non-Identical Assembly Machines and Sequence Dependent Setup Times to Minimize Sum of Holding and Delay Costs”, Computers and Operations Research, Vol. 44, No. 4, PP. 52–65.
- Hariri, A. M. A., and Potts, C. N. (1997). “A Branch and Bound Algorithm for the Two-Stage Assembly Scheduling Problem”, European Journal of Operational Research, Vol. 103. No. 3, PP. 547-556.
- Yokoyama, M. (2001). “Hybrid Flow Shop Scheduling with Assembly Operations”, International Journal of Production Economics,Vol. 73, PP. 103-116.
- Sung, Ch.S., and Juhn, J. (2009). “Makespan Minimization for a 2-Stage Assembly Scheduling Problem Subject to Component Available Time Constraint”, International Journal of Production Economics,Vol. 119, No. 2, PP. 392-401.
- Sung, C. S., and Kim, H. Ah. (2008). “A Two-Stage Multiple-Machine Assembly Scheduling Problem for Minimizing Sum of Completion Times”, International Journal of Production Economics,Vol. 113, No. 2, PP. 1038-1048.
- Fattahi, P., Hosseini, S. M. H., and Jolai, F. (2012). “A Mathematical Model and Extension Algorithm for Assembly Flexible Flow Shop Scheduling Problem”, International Journal of Advance Manufacture Technology, Vol. 65, No. 5-8, PP. 787-802.
- Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, LA: Freeman.
- Sotskov, Y. N., and Tanaev, V. S. (1976). “Chromatic Polynomial of a Mixed Graph”, Vestsi Akademii Navuk BSSR, Seryya Fizika-Matematychnykh Navuk, Minsk. Vol. 140, No. 6, PP. 20–23. Russian.
- Sotskov, Y. N., Dolgui, A., and Werner, F. (2001). “Mixed graph coloring for unit-time job-shop scheduling”, International Journal of Mathematical Algorithms, Vol. 2, No. 4, PP. 289–323.
- Al Anzi, F. S. et al. (2006). “Using Mixed Graph Coloring to Minimize Total Completion Time in Job Shop Scheduling”, applied Mathematics and omputation, Vol. 182, No. 2, PP. 1137–1148.
- Kouider, A. et al. (2015). “Mixed Integer Linear Programs and Tabu Search Approach to Solvemixed Graph Coloring for Unit-Time Job Shop Scheduling”, In IEEE International Conference on Automation Science and Engineering (CASE), August 24–28, Gothenburg, Sweden, 1177–1181.
- Kouider, A. et al. (2017). “Mixed Graph Colouring For Unit-Time Scheduling”, International Journal of Production Research,Vol. 55, No. 6, PP. 1720-1729.
- Shen, J. W. (2003). “Solving the Graph Coloring Problem Using Genetic Programming”, In Genetic Algorithms and Genetic Programming at Stanford 2003: 187-196, Stanford Bookstore.
- Daneshamooz, F., Jabbari, M., and Fattahi, P. (2013). “A Model for Jobshop Scheduling with a Parallel Assembly Stage to Minimize Makespan”, Journal of Industrial Engineering Research in Production Systems,Vol. 2, No. 4, PP. 39-53.
- Setak, M. et al. (2014). “Capacitated Multi-Depot Vehicle Routing Problem with Inter-Depot Routes”, Journal of Industrial Engineering, University of Tehran, Special Issue, Vol. 48, PP. 11-18.
- Kao, Y. T., and Zahara, E. (2008). “A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions”, Applied Soft Computing, Vol. 8, No. 2, PP. 849-857.
- Eberhart, R., and Kennedy, J. (1995). “A New Optimizer Using Particle Swarm Theory”, 6th Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, PP. 4-39.
- Kiani, M. et al. (2015). “An Efficient Genetic Algorithm for a Vehicle Routing Problem Considering the Competency of Working Teams”, Journal of Industrial Engineering, University of Tehran, Vol. 49, No. 2, PP. 257-271.
|