تعداد نشریات | 161 |
تعداد شمارهها | 6,565 |
تعداد مقالات | 70,861 |
تعداد مشاهده مقاله | 125,046,470 |
تعداد دریافت فایل اصل مقاله | 98,273,648 |
ارزیابی شاخصهای سبزینگی در مدلسازی عملکرد نیشکر با تأکید بر الگوی رشد بر اساس پردازش تصاویر ماهوارهای مطالعه موردی: خوزستان کشت و صنعت امام خمینی (ره) | ||
تحقیقات آب و خاک ایران | ||
مقاله 10، دوره 50، شماره 10، اسفند 1398، صفحه 2511-2524 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2019.275237.668118 | ||
نویسندگان | ||
مصطفی خسروی راد1؛ محمود امید* 2؛ فریدون سرمدیان3؛ سلیمان حسین پور4 | ||
1دانشجوی دکتری مهندسی مکانیزاسیون کشاورزی، گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، کرج، ایران | ||
2استاد گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استاد گروه مهندسی خاکشناسی کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
4استادیار گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
هدف از این تحقیق تعیین الگوی رشد و بررسی قدرت شاخصهای سبزینگی برای مدلسازی عملکرد نیشکر در سطح مزارع کشت و صنعت امام خمینی (ره) در استان خوزستان است. برای این منظور شاخصهای سبزینگی مستخرج از تصاویر ماهوارهای لندست7 به کمک سری زمانی بررسی و مورد تحلیل قرار گرفت. در مجموع، تعداد 306 تصویر مربوط به اسفند سال 1383 لغایت بهمن سال 1396 استفاده شد کلیه تصاویر با الگوریتم فلش (FLAASH) به انعکاس سطحی تبدیل شدند. میانگین مقادیر 13 شاخص سبزینگی استخراج و با درونیابی بهصورت سری زمانی هفتروزه تنظیم شد. بهمنظور حذف اعوجاج، سریها با استفاده از الگوریتم ساویتزکی گلای (Savitzky-Golay) بازسازی شدند. بدین ترتیب 13 سری زمانی متفاوت از شاخصهای سبزینگی برای 523 مزرعه نیشکر تشکیل گردید. سپس با میانگینگیری از سری زمانی شاخص سبزینگی NDVI، الگوی رشد نیشکر مشخص و به سه دوره رشد تقسیم شد. سپس مقادیر تجمعی شاخصهای سبزینگی در دورههای رشد اول و دوم الگوی رشد برای سالهای 1383 تا 1396 استخراج شد. بنابراین در مجموع 3286 نمونه بدست آمد که 2628 نمونه برای مدلسازی و 658 نمونه برای ارزیابی مدلها استفاده شد. برای مدلسازی عملکرد، مقادیر تجمعی شاخصهای سبزینگی در مقابل میانگین عملکرد مشاهدهشده با روش رگرسیونی خطی ساده مورد بررسی و ارزیابی قرار گرفت. نتایج نشان داد برای دوره رشد اول شاخص سبزینگی تجمعی GNDVI با ضریب تبیین 47/0 و ضریب RMSE برابر 70/11 تن در هکتار و برای دوره رشد دوم شاخص سبزینگی تجمعی NDI با ضریب تبیین 56/0 و RMSE برابر 62/10 تن در هکتار نمایشدهنده بهتری برای عملکرد نیشکر نسبت به شاخصهای دیگر میباشند. همچنین برای مجموع دوره رشد اول و دوم، مجموع شاخصهای سبزینگی GNDVI و NDI با ضریب تبیین 65/0 و RMSE برابر 47/9 تن در هکتار نتیجه بهتری نسبت به حالتی که فقط از یک شاخص سبزینگی و یک دوره رشد استفاده شد، داشت. در انتها برای 658 نمونه، عملکرد نیشکر برای ارزیابی مدلها تخمین زده شد و ضریب تبیین و RMSE بهترین مدل برابر 58/0 و 99/10 تن در هکتار بدست آمد. نتایج این تحقیق مناسب بودن شاخص GNDVI و NDI را برای پایش رشد نیشکر در دوره رشد اول و دوم تائید میکند. | ||
کلیدواژهها | ||
سری زمانی؛ پردازش تصویر؛ شاخص های سبزینگی؛ بایومس؛ لندست | ||
مراجع | ||
Apan, A., Held, A., Phinn, S., and Markley, J. (2004). Detecting sugarcane “orange rust” disease using EO-1 Hyperion hyperspectral imagery.International Journal of Remote Sensing 25(2): 489-498 Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F., and Siegmund, B. (2010). Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing. 31 (20), 5391-5407. Cai, Z., Jönsson, P., Jin, H., and Eklundh, L. (2017). Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sensing.9, 1271 Crist, E. P. (1985). A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment. 17(3), 301-306. doi.org/10.1016/0034-4257(85)90102-6 Do Bendini, H. N., Sanches, I. D., Körting, T. S., Fonseca, L. M. G., Luiz, A. J. B., and Formaggio, A. R. (2016). Using Landsat 8 image time series for crop mapping in a region of Cerrado, Brazil. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41, 845–850. doi.org/10.5194/isprsarchives-XLI-B8-845-2016 Elhag, A., and Abdelhadi, A. (2018). Monitering And Yield Estimation of Sugarcane Using Remote Sensing and GIS. American Journal of Engineering Research (AJER), 7(1), 170–179 Essari, M., and Mirlatifi, S. (2004). Exploring the use of TERRA satellite,MODIS sensor,CSWB model imagery To estimate the production of cane sugar. Case study of sugarcane cultivation and production of Mirzakochek Khan. Ph. D. dissertation, University of Tarbiat Modares.(In Farsi) FAOSTAT (2017). Sugarcane stat Of United Nation. Retrieved December 15 from http://www.fao.org/faostat/en/#data Gitelson, A. A., Kaufman, Y. J., and Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment. 58(3), 289-298 ,doi.org/10.1016/S0034-4257(96)00072-7 Gitelson, A. A., and Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research. 22(5), 689-692, doi.org/10.1016/S0273-1177(97)01133-2 Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 83(1-2), 195-213, doi.org/10.1016/S0034-4257(02)00096-2 Huete, A., Justice, C., and Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment. 49(3), 224-234, doi.org/10.1016/0034-4257(94)90018-3 Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25(3), 295-309, doi.org/10.1016/0034-4257(88)90106-X IKAI. District (2018). Iman Khomeini Agro Industy. Retrieved September 18, 2018, from http://www.ik-sugarcane.ir/ Jiang, Z., Huete, A., Didan, K., and Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment. 112(10), 3833-3845, Kaufman, Y. J., and Tanr, D. (1992). Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 261–270. Kauth, R. J., and Thomas, G. S. (1976). The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Laboratory for Applications of Remote Sensing. doi.org/10.1529/biophysj.106.083931 Landsat-SLC-off. (2018). Landsat7 SLC off. Retrieved November 18, 2018, from https://landsat.usgs.gov/landsat-7 Landsat7-BQA. (2018). Landsat Collection 1 Level-1 Quality Assessment Band. Retrieved November 18, 2018, from https://landsat.usgs.gov/collectionqualityband Landsat7-L1TP. (2018). Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level-1 Data Products. Retrieved November 18, 2018, from https://lta.cr.usgs.gov/LETMP Lisboa, I. P., Damian, J. M., Cherubin, M. R., Barros, P. P. da S., Fiorio, P. R., Cerri, C. C., and Cerri, C. E. P. (2018). Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy. doi.org/10.3390/agronomy8090196 Mcnairn, H., and Protz, R. (1993). Mapping corn residue cover on agricultural fields in oxford county, ontario, using thematic mapper. Canadian Journal of Remote Sensing. 19(2), 152–159. Mobasheri, M. R., Chahardoli, M., and Farajzadeh, M. (2010). Introducing PASAVI and PANDVI methods for sugarcane physiological date estimation, using ASTER images. Journal of Agricultural Science and Technology. Journal agriculture science technology. 12, 309-320 Morel, J., Bégué, A., Todoroff, P., Martiné, J. F., Lebourgeois, V., and Petit, M. (2014). Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation. European Journal of Agronomy. 61, 60-68, doi.org/10.1016/j.eja.2014.08.004 Muir, J. S., Robson, A. J., and Rahman, M. M. (2018). ‘Sugar from space’: Using satellite imagery to predict cane yield and variability. In 40th Annual Conference Australian Society of Sugar Cane Technologists, ASSCT 2018. Mutanga, S., Schoor, C. Van, Olorunju, P. L., Gonah, T., and Ramoelo, A. (2013). Determining the Best Optimum Time for Predicting Sugarcane Yield Using Hyper-Temporal Satellite Imagery. Advances in Remote Sensing. 2(3), 269-275, doi.org/10.4236/ars.2013.23029 Rahman, M. M., and J. Robson, A. (2016). A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region. Advances in Remote Sensing. 5(2), 93-102, doi.org/10.4236/ars.2016.52008 Robson, A., Abbott, C., Lamb, D., and Bramley, R. O. B. (2012). Developing sugar cane yield prediction algorithms from satellite imagery. Proceedings of the Australian Society of Sugar Cane Technologists. 34(11). Rondaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment. 55(2), 95-107, doi.org/10.1016/0034-4257(95)00186-7. Rouse, J.W, Haas, R.H., Scheel, J.A., and Deering, D. W. (1974). ’Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium (pp. 48–62). Vicente, L. E., Gomes, D., Victoria, D. de C., Koga-Vicente, A., and Iwashita, F. (2013). Evaluation of annual sugarcane monitoring using MODIS/EVI temporal series and spectral mixture analysis approach. In International Geoscience and Remote Sensing Symposium. Retrieved from https://www.researchgate.net/publication/264458361 Zhang, R. H., Rao, N. X., and Liao, K. N. (1996). Approach for a vegetation index resistant to atmospheric effect. Acta Botanica Sinica, 38(1), 53–62. | ||
آمار تعداد مشاهده مقاله: 777 تعداد دریافت فایل اصل مقاله: 523 |