تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,094,452 |
تعداد دریافت فایل اصل مقاله | 97,199,896 |
معرفی یک روش ترکیبی برای تخمین سرعت باد با استفاده از اطلاعات ایستگاههای همسایه در استان اصفهان | ||
تحقیقات آب و خاک ایران | ||
مقاله 15، دوره 50، شماره 1، فروردین و اردیبهشت 1398، صفحه 177-188 اصل مقاله (2.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2018.254410.667873 | ||
نویسندگان | ||
بابک محمدی1؛ زهرا شریعتمداری* 2 | ||
1گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران کرج، ایران | ||
2استادیار گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
پیشبینی مؤلفههای باد ازجمله سرعت باد یکی از عوامل مهم بهخصوص در بحث تبخیر در یک حوزه آبخیز محسوب میشود. در این مقاله برای افزایش کارایی مدل ماشین بردار پشتیبان در پیشبینی سرعت باد، این مدل با الگوریتم بهینهسازی کرم شبتاب ترکیبشد که منبعد به عنوان مدل ترکیبی از آن یاد میشود. در این راستا با استفاده از دادههای سرعت باد ایستگاههای همدید استان اصفهان، مقادیر سرعت باد ماهانه در ایستگاههای مجهول همسایه در مقیاس ماهانه برآورد شد و سپس کارایی مدلهای ماشین بردار پشتیبان و مدل ترکیبی مورد مقایسه قرار گرفت. در نهایتبا استفاده از معیارهای RMSE، MAE، WI و NS، کارآیی عملکرد دو مدل مورد ارزیابی قرار گرفت. نتایج نشان داد که در مرحله ارزیابی، مدل ترکیبی با مقادیر همبستگی بالا و خطای کمتر کارآیی بالاتری نسبت به مدل دیگر دارد. همچنین روش استفاده از دادههای ایستگاههای همسایه بهعنوان ورودی مدلهای تخمینگر ایستگاه مجهول، روش مناسبی برای تخمین سرعت باد میباشد. | ||
کلیدواژهها | ||
اصفهان؛ الگوریتم کرم شب تاب؛ ایستگاه همسایه؛ روش هیبریدی؛ سرعت باد | ||
مراجع | ||
Afkhami, H., Talebi, A., Mohammadi, M. and Fotouhi, F. (2015). Investigation of the feasibility of wind speed prediction using hybrid model of neural networks, neural -fuzzy networks and wavelet (Case Study: Station of Yazd). jwmseir. 9 (30): 31-40. (In Farsi) Alexiadis, M. C., Dokopoulos, P. S. and Sahsamanoglou, H. S. (1998). Short-term forecasting of wind speed and related electrical power.Solar Energy. 63(1): 61-68,1998. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2001). Wind energy handbook. Chichester: John Wiley and Sons. Cadenas, E. and Rivera, W. 2007. Wind speed forecasting in the south coast of Oaxaca, Mexico. Renewable Energy. 32 (12): 2116-2128. Deo, R., Ghorbani. M.A., Samadianfard, S., Maraseni, T., Bilgili, M. and Biazar, M. (2017). Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for wind speed prediction of target site using a limited set of neighboring reference station data. Renewable Energy. 116: 309-323. Damousis, I. G. and Dokopoulos, P. A. (2001). Fuzzy expert system for the forecasting of wind speed and power generation in wind farms. In Proceedings of the IE IEEE International Conference on Power Industry Computer Applications PICA 01. 63–69. Ghorbani, M. A., Deo, R., Yaseen, Z.M., Kashani, M.H. and Mohammadi, B. (2017a). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theoretical and Applied Climatology. 129:1-13. Ghorbani, M. A., Shamshirband, SH., Zare Haghie, D., Azania, A., Bonakdarif, H. and Ebtehajf, I. (2017b). Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil & Tillage Research. 172: 32–38. Guangdian, G.W. and Zhijie, D. (1994). Wind pattern recognition in neural fuzzy wind turbine control system. NAFIP, IFIS, NASA The Industrial Fuzzy and Intelligent Systems Conference and the NASA Joint Technology. 381-5 p. Hosseini-Moghari, S.M. and Banihabib, M.E. (2014). Optimizing operation of reservoir for agricultural water supply using firefly algorithm. Journal of Water and Soil Resources Conservation. 3(4). (In Farsi) Kazemzadeh, M,J., Daneshmand. and Ahmadfard, M. A. (2015). Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm. Water Resources Management. 29(8): 2895-2912. Kisi, O., Genc. O., S. Dinc and M. Zounemat-Kermani. (2016). Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks. Classification and Regression tree Computers and Electronics in Agriculture. 122: 112–117. Kisi, O., Shiri, J., Karimi, S., Shamshirband, Sh., Motamedi, Sh., Petkovic, D. and Hashim, R. (2015). A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation. 270: 731-743. Liu, H., Tian, H. and Li, Y. (2012a). Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Applied Energy. 98, 415-424. Liu, H., Chen, C., Tian, H. and Li., Y. (2012b). A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy. 48: 545-556. Mohammadi, B. (2017). Daily Evaporation prediction based on a hybridization of Artificial Neural Network and firefly Optimization Algorithm. Thesis is approved for the degree of Master of Science in Water Resources. Department of Water Engineering, Faculty of Agriculture, University of Tabriz. (In Farsi) Mohammadi, B. and Emamgholizadeh, S. (2017). Using principal component analysis to inputs the effective rainfall estimates based on entries to help support vector machine and artificial neural network. Journal of Rainwater Catchment Systems. 4(4): 67-75. (In Farsi) Mohammadi, B., Moazenzadeh, R. (2017). Uncertainty analysis of artificial neural network models and support vector machine in rainfall estimation. Journal of Rainwater Catchment Systems. 5(1): 43-50. (In Farsi) Oztopal, A. (2006). Artificial neural network approach to spatial estimation of wind velocity data. Energy Conversion and Management. 47(4): 395-406. Pai, PF. and Hong, WC. (2007). A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21:819-827. Philippopoulos, K. and Deligiorgi, D. (2012). Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renewable Energy. 38(1): 75-82. Potter, C. W. and Negnevitsky, M. (2006). Very short-term wind forecasting for Tasmanian power generation. IEEE Transaction on power systems. 21(2): 965-972. F. Rahimzadeh, A. M., Noorian, M., Pedram, and Kruk, M. C.(2011). Wind speed variability over Iran and its impact on wind power potential: A case study for Esfehan Province,” Meteorol. Appl., METEOROLOGICAL APPLICATIONS Meteorol. Appl. 18: 198–210. Soder, L. (2004). Simulation of wind speed forecast errors for operation planning of multi-area power systems. 8th International conference on probabilistic methods applied to power systems. Iowa state university. Iowa. 23-28p. Vapnik,V. N. (1998). Statistical Learning Theory. Wiley, New York. Watson, S. J., Landberg, L. and Halliday, J.A. (1994). Application of wind speed forecasting to the integration of wind energy in to a large scale power system. In: IEE Proceedings of Generation, Transmission and Distribution, 141(4): 357-362. Yang, X.S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms. Springer, Berlin, Heidelberg. Pp: 169-178. Yang, X. S. and He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence. 1(1): 36-50. Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. and Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology. 396:128–138. Zhang, Q. and Benveniste, A. (1992). Wavelet networks. IEEE Transactions on Neural Networks. 3(6): 889-898.
| ||
آمار تعداد مشاهده مقاله: 351 تعداد دریافت فایل اصل مقاله: 261 |