تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,032 |
تعداد مشاهده مقاله | 122,992,600 |
تعداد دریافت فایل اصل مقاله | 96,222,594 |
Influence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure | ||
Pollution | ||
مقاله 18، دوره 5، شماره 1، فروردین 2019، صفحه 225-234 اصل مقاله (701.07 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2018.251034.383 | ||
نویسندگان | ||
E. F. Kaviani1؛ A. S. Naeemi* 1؛ A. Salehzadeh2 | ||
1Department of Biology, Faculty of sciences, University of Guilan, Rasht, Iran | ||
2Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran | ||
چکیده | ||
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the present paper examines the acute and chronic effects of CuO-NPs on hematology and plasma biochemistry of juvenile Caspian trout. After determining the lethal concentrations (LC50), juvenile Caspian trout is exposed to 0.1 LC5096 CuO-NPs for 28 days in three replicates. The blood samples are then collected from fish after 24, 48, 72, and 96 hours as well as 1, 2, 3, and 4 weeks of exposure to the CuO-NPsto deal with short- and long-term effects, respectively. Analysis of these samples shows that some hematological factors like hemoglobin (Hb), red blood cells (RBC), and hematocrit (Hct) are significantly increased after acute exposure, compared to the control group (p<0.05). The number of white blood cells (WBC), neutrophilis, and monocytes are also increased after acute and chronic exposure with significant differences (p< 0.05). Furthermore, the levels of lactate dehydrogenase after acute and alkaline phosphatase along with aspartate aminotransferase after acute and chronic exposure are significantly increased (p<0.05). Thus, results indicate that the presence of even a tiny amount of CuO-NPs can affect most haematological and metabolic enzymes of the Caspian trout in the short and long-term exposure. It is therefore essential to prevent these nanomaterials from entering the aquatic environment. | ||
کلیدواژهها | ||
Copper oxide nanoparticle؛ Salmo trutta caspius؛ Aquatic Nanotoxicology؛ Lethal concentration | ||
مراجع | ||
Abdel-Khalek, A., Kadry, M. A. M., Badran, S. R. and Marie, M. A. S. (2015). Comparative toxicity of copper oxide bulk and nanoparticles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. J. Basic. Appl Zool., 72; 43-57.
Adel, M., Dadar, M., Khajavi, S.H., Pourgholam, R., Karimí, B. and Velisek, J. (2017). Hematological, biochemical and histopathological changes in Caspian brown trout (Salmo trutta caspius Kessler, 1877) following exposure to sublethal concentrations of chlorpyrifos. Toxin Rev., 36(1); 73-79.
Adhikari, S., Sarkar, B., Chatterjee, A., Mahapatra, C. T. and Ayyappan, S. (2004). Effects of cypermethrin and carbofuran haematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol. Environ. Saf., 58(2); 220-226.
Affonso, E. G., Polez, V. L. P., Correa, C. F., Mazon, A. F., Araujo, M. R. R., Moraes, G. and Rantin, F. T. (2002). Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp. Biochem. Physiol., 133(3); 375–382.
Al-Bairuty, G. A., Shaw, B. J., Handy, R. D. and Henry, T. B. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 126; 104–115.
Amr, A., Abdel-Khalek Mohamed, A. M., Kadry Shereen, R. and Badran Mohamed-Assem, S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. J Basic Appl Zool., 72; 43–57.
Barannik, V., Borysova, O. and Stolberg, F. (2004). The Caspian Sea region: environmental change. Ambio, 33; 45-51.
Barton, B. A. and Iwamz, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis., 1; 3-26.
Binelli, A., Parolini, M. and Cogni, D. (2009). A multi-biomarker assessment of the impact of the antibacterial trimethoprim on the nontarget organism Zebra mussel (Dreissena polymorpha). Comp Biochem Physiol C, Toxicol Pharmacol, 150(3); 329–336.
Blaxhall, P. C. and Daisley, W. (1973). Routine haematological methods for use with fish blood. J. Fish. Biol., 5(6); 771-781.
Caravalho, C. S. and Fernandes, M. N. (2006).Effect of temperature on copper toxicity and hematological responses in the Neotropical fish Prochilodus scrofa at low and high pH. Aqua, 251(1); 109-117.
Costillas, E. and Smith, L. S. (1977). Effect of stress on blood coagulation and haematology in rainbow trout. J. Fish. Biol., 10(5); 481-491.
Cyriac, P. J., Antony, A. and Nambisan, P. N. K. (1989). Hemo-globin and haematocrit values in the fish, Oreochro- mis mossambicus (Peters) after short term exposure to copper and mercury. Bull. Envirn. Contam. Toxicol., 43(2); 315-320.
Dar, M. A., Kim, Y. S., Kim, W. B., Sohn, J. M. and Shin, H. S. (2008). Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl. Surf. Sci., 254(22); 7477–7481.
De Boeck, G., Meeus, W., De Coen, W. and Blust, R. (2004). Tissue specific Cu bioaccumation patterns and differences in sensitivity to waterborne Cu in three freshwater fish: rainbow trout, Oncorhynchus mykiss, common carp, Cyprinus carpio. Aquat. Toxicol., 70(3); 179-188.
Dhanapakiam, P. and Ramasamy, V. K. (2001). Toxic effects of copper and zinc mixtures on some haematological and biochemical parameters in common carp, Cyprinus carpio (Linn). J. Environ. Biol., 22(2); 105–111.
Dube, P. N., Shwetha, A. and Hosetti, B. B. (2014). Impact of copper cyanide on the key metabolic enzymes of freshwater fish Catla catla (Hamilton). Biotechnol. Anim. Husb., 30; 499–508.
Faeiz, H., Zuberi, A., Nazir, S., Rauf, M. and Younus, N. (2015). Zinc Oxide, Zinc Sulfate and Zinc Oxide Nanoparticles as Source of Dietary Zinc: Comparative Effects on Growth and Hematological Indices of Juvenile Grass Carp (Ctenopharyngodon idella). Int. J. Agric. Biol., 17; 568‒574.
Heath, A. G. (Eds.) (1995). Water pollution and fish physiology. (New York: CRC Press).
Hoseini, S. M., Hedayati, A., Taheri Mirghaed, A. and Ghelichpour, M. (2016). Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Exp. Toxicol. Pathol., 68(9); 493-503.
Imani, M., Halimi, M. and Khara, H. (2015). Effects of silver nanoparticles (AgNPs) on hematological parameters of rainbow trout, Oncorhynchus mykiss. Comp Clin Pathol., 24(3); 491–495.
Isani, G., Falcioni, M. L., Barucca, G., Sekar, D., Andreani, G., Carpenè, E. and Falcioni, G. (2013). Comparative toxicity of CuO nanoparticles and CuSO4 in Rainbow trout. Ecotoxicol. Environ. Saf., 97(1); 40-46.
Jahanbakhshi, A., Hedayati, A. and Pirbeigi, A. (2015).Determination of acute toxicity and the effects of sub-acute concentrations of CuO nanoparticles on blood parameters in Rutilus rutilus. Nanomed. J., 2(3); 195-202.
Jevgenij, A. K., SotníKová, R., ZelJenKová, D., Rollerová, E., SZAbová, E. and Wimmerová, S. (2013). Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages – comparative study. Toxicol., 6(2); 67–73.
Jiraungkoorskul, W., Upatham, E.S. and Kruatrachue, M. (2003). Biochemical and histopathological effects of glyphosate herbicide on Nile tilapia (Oreochromis niloticus). Environ. Toxicol, 18; 260-267.
Johari, S.A., Kalbassi, M.R., Yu, J. and Lee, J.H. (2014). Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Pathol, 24(5); 995–1007.
Khabbazi, M., Harsij, M., Hedayati, S. A. A., Gholipoor, H., Gerami, M. H. and Ghafari Farsani, H. (2015). Effect of CuO nanoparticles on some hematological indices of rainbow trout Oncorhynchus mykiss and their potential toxicity. Nanomedicine., 2(1); 67-73.
Lee, R. G., Foerster, J. and Jukens, J. (Eds.) (1998). Wintrobe’sclinical hematology. (New York: Lippincott Williams and Wilkins)
Khosravi-Katuli, K., Lofrano, G., Pak Nezhad, H., Giorgio, A., Guida, M., Aliberti, F., Siciliano, A., Carotenuto, M., Galdiero, E., Rahimi, E. and Libralato, G. (2018). Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus). Sci Total Environ., 626; 30-41.
Kumar, N., Krishnani, K.K. and Singh NP. (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res Int., 25(9); 8914-8927.
Louei Monfared, A. and Soltani, S. (2013). Effects of silver nanoparticles administration on the liver of rainbow trout (Oncorhynchus mykiss): histological and biochemical studies. Euro J Exp Bio., 3(2); 285-289.
Neff, J. M. (1985). Use of biochemical measurements to detect pollutant-mediated damage to fish. Aquat. Toxicol. Haz. Assess., 854; 155–183.
Nel, A. E., Ma¨ dler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. (2009). Understanding biophysicochemical interactions at the nanobio interface. Nat. Mater., 8(7); 543–557.
Niksirat, H. and Abdoli, A. (2009). On the status of the critically endangered Caspian brown trout, Salmo trutta caspius, during recent decades in the southern Caspian Sea basin. Zool Middle East, 46; 55-60.
OECD, 203 (1992). Fish, Acute Toxicity Test. Paris. France.
Ololade, I. A. and Oginni, O. (2010). Toxic stress and hematological effects of nickel on African catfish, Clarias gariepinus, fingerlings. J. Environ. Chem. Ecotoxicol., 2(2); 014-019.
Perera, S. A. D. S. and Pathiratne, A. (2012). Haemato-Immunological and Histological Responses in Nile Tilapia, Oreochromis niloticus Exposed to Titanium Dioxide Nanoparticles. Sri Lanka J Aquat Sci., 17(1); 1-18.
Quillet, E., Faure, A., Chevassus, B., Kreig, F., Harache, Y., Arzel, J. and Metailler, R. (1992). The potential of trout (Salmo trutta L.) for mariculture in temperate waters. Icel. Agric. Sci., 6; 63-76.
Remyla, S. R., Ramesh, M., Sajwan, K. S. and Kumar, K. S. (2008). Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish. Physiol. Biochem., 34(2); 169-174.
Scown, T. M., Van Aerle, R. and Tyler, C. R. (2010). Review: Do engineered nanoparticles pose a significant threat to the aquatic environment. Crit. Rev. Toxicol., 40(7); 653-670.
Serezli, R., Akhan, S. and Delihasan-Sonay, F. (2011). Acute effects of copper and lead on some blood parameters on Coruh trout (Salmo coruhensis). Afr. J. Biotechnol., 10; 3204-3209.
Shahsavani, D., Mohri, M. and Gholipour Kanani, H. (2010). Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish. Physiol. Biochem., 36(1); 39-43.
Shirdel, I. and Kalbassi, R. (2016). Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius). Comp. Biochem. Physiol. C, 183; 28-35.
Studer, A. M., Limbach, L. K., Van Duc, L., Krumeich, F., Athanassiou, E. K., Gerber, L. C., Moch, H. and Stark, W. J. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett., 197(3); 169–174.
Suvetha, L., Ramesh, M. and Saravanan, M. (2010). Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+ ATPase activity of a freshwater teleost fish Cyprinu carpio. Environ. Toxicol. Pharmacol., 29(1); 44-49.
Tencalla, G. F., Dietrich, R. D. and Schlatter, C. H. (1994) Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol., 30(3); 215–224
Vera, M., Sourinejad, I., Bouza, C., Vilas, R., Pino-Querido, A., Kalbassi, M. R. and Martı´nez, P.(2011). Phylogeography, genetic structure, and conservation of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877). Hydrobiologia., 664(1); 51–67.
Wang, Z., Zhao, J., Li, F., Gao, D. and Xing, B. (2009). Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere., 77(1); 67–73.
Witeska, M. and Wakulska, M. (2007).The effects of heavy metals on common carp white blood cells in vitro. Altern Lab Anim., 35(1); 87-92.
Zaghloul, K. H., Omar, W. A. and Abo-Hegab, S. (2006). Toxicity specificity of copper in some freshwater fishes. Egypt. J. Zool., 47; 383–400.
Zhao, J., Wang, Z., Liu, X., Xie, X., Zhang, K. and Xing, B. (2011). Destribution of CuO nanoparticles in juvenile carp Cyprinus carpio and their potential toxicity. J. Hazard. Mater., 197; 304– 310. | ||
آمار تعداد مشاهده مقاله: 1,512 تعداد دریافت فایل اصل مقاله: 1,092 |