تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,935 |
تعداد دریافت فایل اصل مقاله | 98,769,038 |
بررسی کارایی روشهای مبتنی بر تسرویید در محاسبه اثر جاذبی توپوگرافی | ||
فیزیک زمین و فضا | ||
مقاله 8، دوره 44، شماره 3، آبان 1397، صفحه 595-606 اصل مقاله (497.45 K) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.256945.1007004 | ||
نویسنده | ||
مهدی گلی* | ||
استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، ایران | ||
چکیده | ||
اثر جاذبی توپوگرافی یکی از مؤلفههای مهم میدان گرانی است که سهم مهمی در مطالعات ژئوفیزیک و ژئودتیکی را ایفا میکند. برای تفاسیر ژئوفیزیکی لازم است اثر توپوگرافی بهعنوان عامل مزاحم از دادههای جاذبی اندازهگیری شده حذف شود. در حل مسائل مقدار مرزی ژئودتیکی توپوگرافی مانعی برای هارمونیک بودن فضا است. این مطالعه به نحوه محاسبه اثر توپوگرافی اجرام نزدیک تا فاصله 1.5 درجه (برابر 167 کیلومتر) موسوم به زون هایفورد-بووی میپردازد. رابطه ریاضی برای این منظور مشتق ارتفاعی انتگرال نیوتن و دادههای مورد استفاده مدلهای رقومی ارتفاعی است. کارایی چهار روش مبتنی بر المان تسرویید با روش منشور مقایسه میشود. این روشها شامل: انتگرالگیری عددی با قاعده نمایی مضاعف موسوم به روش فوکوشیما، انتگرالگیری عددی بروش مارتینک-ونیچک، بسط سری تیلور موسوم به هک-سویتز و روش نقطه مادی همگی دارای تقریب کروی هستند. برای آزمون صحت نتایج روشهای مختلف، از یک مدل تحلیلی (توپوگرافی مصنوعی حاصل از یک کلاهک کروی با ارتفاع 1000متر) با اثر توپوگرافی معلوم استفاده شده است. گسستهسازی این مدل تحلیلی با شبکههای با ابعاد مختلف و در نواحی بسیار نزدیک، نزدیک و دور انجام شد. نتایج عددی حاکی از موفقیت روش منشور برای مدلسازی اثر توپوگرافی برای اجرام نزدیک (ناحیه تا شعاع 18 کیلومتر) نسبت به روشهای بر مبنای تسرویید است. در این ناحیه، انتگرالگیری با مدل ارتفاعی با گام بهتر از 30 متر برای تأمین دقت 10 میکروگال لازم است. در نواحی 18 کیلومتر تا 167 کیلومتر نتایج عددی همه روشهای تعیین اثر توپوگرافی یکسان است. | ||
کلیدواژهها | ||
اثر توپوگرافی؛ آنومالی جاذبه؛ تسرویید؛ انتگرالگیری عددی؛ منشور | ||
مراجع | ||
گلی، م. و نجفی علمداری، م.، 1393، تقریب بیضویِ اثرات توپوگرافی در مدلسازی میدان گرانی زمین، مجله فیزیک زمین و فضا، 40(2)، 113-124.
Asgharzadeh, M. F., Von Frese, R. R. B., Kim, H. R., Leftwich T. E. and Kim, J. W., 2007, Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophysical Journal International, 169, 1-11. Claessens, S. and Hirt, C., 2013, Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid, Journal of Geophysical Research: Solid Earth. 118, 5991-6002. Forsberg, R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Report 355, Department of Geodetic Science. The Ohio State University, Columbus. Forsberg, R., 1985, Gravity field terrain effect computations by FFT. Journal of Geodesy, 59: 342-360. Sansò, F. and Rummel, R., 1997, Geodetic boundary value problems in view of the one centimeter geoid. Lecture Notes in Earth Sciences, Berlin Springer Verlag, 65. Fukushima, T., 2017, Accurate computation of gravitational field of a tesseroid, revised. Grombein, T., Seitz, K. and Heck, B., 2013, Optimized formulas for the gravitational field of a tesseroid. Journal of Geodesy, 877, 645-660. Heck, B. and Seitz, K., 2007, A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. Journal of Geodesy, 81, 121-136. Hinze, W. J., 2003, Bouguer reduction density, why 2.67? Geophysics, 68, 1559-1560. Huang, J., 2002, Computational methods for the discrete downward continuation of the Earth gravity and effects of lateral topographical mass density variation of gravity and geoid, Ph.D thesis, UNB. Hwang, C., Wang C.-G. and Hsiao, Y.-S., 2003, Terrain correction computation using Gaussian quadrature. Computers & Geosciences 29, 1259-1268. Krynski, J., Mank, M. and Grzyb, M., 2005, Evaluation of digital terrain models in Poland in view of a cm geoid modelling. Geodesy and Cartography, 54, 155-175. LaFehr, T. R., 1991, Standardization in gravity reduction. Geophysics, 56, 1170-1178. Mader, K., 1951, Das Newtonsche Raumpotential prismatischer Kper und seine Ableitungen bis zur dritten Ordnung. sterr Z Vermess Sonderheft. Martinec, Z., 1998, Boundary-value problems for gravimetric determination of a precise geoid. Heidelberg, Springer. Martinec, Z. and Vanicek, P., 1994, Direct topographical effect of Helmert's condensation for a spherical geoid. Man. Geod. 19, 257-268. Martinec, Z., Vanicek, P., Mainville, A. and Veronneau, M., 1995, Evaluation of topographical effects in precise geoid computation from densely sampled heights. Journal of Geodesy, 20, 193-203. Nagy, D., 1966, The gravitational attraction of a right rectangular prism. Geophysics, 31, 362-371. Nagy, D., Papp G. and Benedek, J., 2000, The gravitational potential and its derivatives for the prism. Journal of Geodesy 74, 552-560. Novak, P. and Grafarend, E. W., 2005, The ellipsoidal representation of the topographical potential and its vertical gradient. Journal of Geodesy, 78, 691-706. Novák, P., Vaníček, P., Martinec, Z. and Véronneau, M., 2001, Effects of the spherical terrain on gravity and the geoid. Journal of Geodesy, 75, 491-504. Nowell, D. A. G., 1999, Gravity terrain corrections †an overview. Journal of Applied Geophysics, 42, 117-134. Smith, D. A., 2000, The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. Journal of Geodesy, 74, 414-420. Smith, D. A., Robertson, D. S. and Milbert, D. G., 2001, Gravitational attraction of local crustal masses in spherical coordinates. Journal of Geodesy, 74, 783-795. Sun, W., 2002, A formula for gravimetric terrain corrections using powers of topographic height. Journal of Geodesy, 76, 399-406. Takahasi, H. and Mori, M., 1974, Double exponential formulas for numerical integration. Publications of the Research Institute for Mathematical Sciences, 93, 721-741. Tenzer, R., Novac, P., Janak, J., Huang, J., Najafi-Almadari, M., Vajda, P. and Santos, M., 2003, A review of the UNB Stokes-Helmert approach for precise geoid determination In Honoring The Academic Life Of Petr Vanicek. Tsoulis, D., 2003, Terrain modeling in forward gravimetric problems, a case study on local terrain effects. Journal of Applied Geophysics, 54, 145-160. Tsoulis, D., Novák, P. and Kadlec, M., 2009, Evaluation of precise terrain effects using high-resolution digital elevation models. J. Geophys. Res., 114, B02404. Tsoulis, D. V., 1998, A combination method for computing terrain corrections. Physics and Chemistry of The Earth 23, 53-58. Uieda, L., Barbosa, V. and Braitenberg, C., 2016, Tesseroids: Forward-modeling gravitational fields in spherical coordinates. GEOPHYSICS, 815, F41-F48. Vaníček, P., Kingdon, R., Kuhn, M., Ellmann, A., Featherstone, W. E., Santos, M. C., Martinec, Z., Hirt, C. and Avalos-Naranjo, D., 2013, Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings, Studia Geophysica et Geodaetica, 573, 369-400. Vanícek, P., Tenzer, R., Sjoberg, L., Martinec, Z. and Featherstone, W., 2004, New views of the spherical Bouguer gravity anomaly. Geophysical Journal International, 13, 460-472. Wild-Pfeiffer, F., 2008, A comparison of different mass elements for use in gravity gradiometry. Journal of Geodesy, 82, 637-653. Yamamoto, A., 2002, Spherical terrain corrections for gravity anomaly using a digital elevation model gridded with nodes at every 50 m. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 11, 845-880. Zahorec, P., 2015, Inner zone terrain correction calculation using interpolated heights. Contributions to Geophysics and Geodesy. 45, 219. | ||
آمار تعداد مشاهده مقاله: 1,031 تعداد دریافت فایل اصل مقاله: 639 |