تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,516,592 |
تعداد دریافت فایل اصل مقاله | 98,777,656 |
Group $\{1, -1, i, -i\}$ Cordial Labeling of sum of $C_n$ and $K_m$ for some $m$ | ||
Journal of Algorithms and Computation | ||
مقاله 11، دوره 49، شماره 2، اسفند 2017، صفحه 129-139 اصل مقاله (141.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2017.67017 | ||
نویسندگان | ||
M.K.Karthik Chidambaram1؛ S. Athisayanathan1؛ R. Ponraj2 | ||
1Department of Mathematics, St.Xavier's College ,Palayamkottai 627 002, Tamil Nadu, India | ||
2Department of Mathematics, Sri Paramakalyani College, Alwarkurichi--627 412, India | ||
چکیده | ||
Let G be a (p,q) graph and A be a group. We denote the order of an element $a \in A $ by $o(a).$ Let $ f:V(G)\rightarrow A$ be a function. For each edge $uv$ assign the label 1 if $(o(f(u)),o(f(v)))=1 $or $0$ otherwise. $f$ is called a group A Cordial labeling if $|v_f(a)-v_f(b)| \leq 1$ and $|e_f(0)- e_f(1)|\leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element $x$ and number of edges labelled with $n (n=0,1).$ A graph which admits a group A Cordial labeling is called a group A Cordial graph. In this paper we define group $\{1 ,-1 ,i ,-i\}$ Cordial graphs and characterize the graphs $C_n + K_m (2 \leq m \leq 5)$ that are group $\{1 ,-1 ,i ,-i\}$ Cordial. | ||
آمار تعداد مشاهده مقاله: 250 تعداد دریافت فایل اصل مقاله: 194 |