- Dekkers, J. C. M. (1994). Optimal breeding strategies for calving ease. Journal of Dairy Science, 77, 3441-3453.
- Gianola, D. & Sorensen, D. (2004). Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics, 167, 1407-1424.
- Ghoreishi, S. Sh, Rokouei, M., Sargolzaee, M. & Moghimi Esfandabadi, A. (2013). Studying the effect of calf birth weight on some economically important traits in Holstein dairy cows of Iran. Iranian Journal of Animal Sciences, 44 (1), 35-43. (in Farsi)
- Groen, A. F., Steine, T., Colleau, J. J., Pedersen, J. Pribyl, J. & Reinsch, N. (1997). Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science, 49, 1-21.
- Hansen, M., Lund, M.S., Pedersen, J. & Christensen, L. G. (2004). Gestation length in Danish Holsteins has weak genetic associations with stillbirth, calving difficulty, and calf size. Livestock Production Science, 91, 23-33.
- Jamrozik, J., Fatehi, J., Kistemaker, G. J. & Schaeffer, L. R. (2005). Estimates of genetic parameters for Canadian Holstein female reproduction traits. Journal of Dairy Science, 88, 2199-2208.
- Jamrozik, J. & Miller, S. P. (2014a). Genetic evaluation of calving ease in Canadian Simmentals using birth weight and gestation length as correlated traits. Livestock Science, 162, 42-49.
- Jamrozik, J. & Miller, S. P. (2014b). Partitioning of multiple-trait model parameters with respect to phenotypic recursion: case study of birth weight and calving ease in Canadian Simmentals. In: Proceedings of 10th World Congress of Genetics Applied to Livestock Production, 17-22 Aug., Vancouver, British Columbia, Canada.
- Johanson, J. M. & Berger, P. J. (2003). Birth weight as a predictor of calving ease and perinatal mortality in Holstein cattle. Journal of Dairy Science, 86, 3745-3755.
- Lee, D., Misztal, I., Bertrand, K. & Rekaya, R. (2002). National evaluation for calving ease, gestation length and birth weight by linear and threshold model methodologies. Journal of Applied Genetics, 43(2), 209-216.
- Lopez de Maturana, E., Legarra, A., Varona, L. & Ugarte, E. (2007). Analysis of fertility and Dystocia in Holsteins using recursive models to handle censored and categorical data. Journal of Dairy Science, 90, 2012-2024.
- Lopez de Maturana, E., Wu, X-L., Gianola, D., Weigel, K. W. & Rosa, G. J. M. (2009). Exploring biological relationships between calving traits in primiparous cattle with a Bayesian recursive model. Genetics, 181, 277-287.
- Lopez de Maturana, E., de los Campos, G., Wu, X. L., Gianola, D., Weigel, K. A. & Rosa, G. J. M. (2010). Modeling relationships between calving traits: a comparison between standard and recursive mixed models. Genetics Selection Evolution, 42(1).
- Mark, T. (2004). Applied genetic evaluations for production and functional traits in dairy cattle. Journal of Dairy Science, 87, 2641-2652.
- Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T. & Lee, D. (2002). BLUPF90 and related programs (BGF90). In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 19-23 Aug., Montpellier, France.
- Moreno, C., Sorensen, D., Garcia-Cortes, L. A., Varna, L. & Altarriba, J. (1997). On biased inferences about variance components in the binary threshold model. Genetics Selection Evolution, 29, 145-160.
- Mrode, R. & Thompson, R. (2005). Linear models for the prediction of animal breeding values. CABI publishing. USA. Pp. 344.
- Nogalski, Z. & Piwszynski, D. (2012). Association of length of pregnancy with other reproductive traits in dairy cattle. Asian-Australian Journal of Animal Sciences, 25(1), 22-27.
- Rosa, G. J. M., Valente, B. D., de los Campos, G., Wu, X. L., Gianola, D. & Silva, M. A. (2011). Inferring causal phenotype networks using structural equation models. Genetics Selection Evolution, 43:6.
- Sorensen, D. A. & Gianola, D. (2002). Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer-Verlag, New York.
- Statistical Analysis System (SAS). (2004). SAS Users’ Guide, Version 9.1. SAS Institute Inc., Cary, North Carolina, USA.
- Valente, B. D. & Rosa, G. J. M. (2013). Mixed effects structural equation models and phenotypic causal networks,In: C. Gondro, (Ed), Genome-Wide Association Studies and Genomic Prediction, Methods in Molecular Biology. (pp. 449-464.) Springer Sciences.
|