- Abdollahi-Arpanahi, R., Pakdel, A. & Zandi- Baghchehmaryam, M. B. (2012). From infinitesimal model to Genomic Selection. Modern Genetics, 17(2), 105-114. (in Farsi)
- Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A. & Wang, H. (2014). PREGSF90–POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of 10th World Congress of Genetics Applied to Livestock Production, 17-22 Aug., Vancouver, Canada, pp. 1-3.
- Baloche, G., Legarra, A., Sallé, G., Larroque, H., Astruc, J. M., Robert-Granié, C. & Barillet, F. (2014). Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. Journal of Dairy Science, 97(2), 1107-1116.
- Clark, S. A., Hickey, J. M. & van der Werf, J. H. (2011). Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evaluation, 43(1), 18-27.
- Daetwyler, H. D., Villanueva, B., Bijma, P. & Woolliams, J. A. (2007). Inbreeding in genome‐wide selection. Journal of Animal Breeding and Genetics, 124(6), 369-376.
- Daetwyler, H. D., Pong-Wong, R., Villanueva, B. & Woolliams, J. A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185(3), 1021-1031.
- Daetwyler, H. D., Swan, A. A., van der Werf, J. H. & Hayes, B. J. (2012). Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genetics Selection Evolution, 44(1), 33-44.
- Falconer, D. S. & Mackay, T. F. C. (2005). Introduction to Quantitative Genetics. (5th ed.). Longman, London.
- Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society, Edinburgh 52, 399-433.
- Forneris, N. S., Steibel, J. P., Legarra, A., Vitezica, Z. G., Bates, R. O., Ernst, C. W., Basso, A. L. & Cantet, R. J. C. (2016). A comparison of methods to estimate genomic relationships using pedigree and markers in livestock populations. Journal of Animal Breeding and Genetics, 133(6), 452-462.
- Foroutanifar, S., Mehrabani-Yeganeh, H. & Moradi- Shahrbabak, M. (2012). Effects of heritability, number of individuals in training population and map density on accuracy of single and two traits estimated genomic breeding values. In: Proceedings of 12th Iranian genetics congress., 21-23 May., Tehran, Iran, pp. 1-2. (in Farsi)
- Foroutanifar, S. (2016). Sensitivity of genomic single and multi – trait prediction accuracy to genetic architecture of the traits. Modern Genetics Journal, 11(3), 391-398. (In Farsi)
- Gao, N., Li, J., He, J., Xiao, G., Luo, Y., Zhang, H., Chen, Z. & Zhang, Z. (2015). Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model. BMC genetics, 16(1), 120-131.
- Guo, G., Lund, M. S., Zhang, Y. & Su, G. (2010). Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables. Journal of Animal Breeding and Genetics, 127(6), 423-432.
- Habier, D., Fernando, R. L., Kizilkaya, K. & Garrick, D. J. (2011). Extension of the Bayesian alphabet for genomic selection. BMC Genetics, 12 (1), 186-198.
- Hayes, B. J., Bowman, P. J., Chamberlin, A. C. & Goddard, M. E. (2009). Invited review genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92, 433-443.
- Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding. University of Guelph Press, Guelph, Canada.
- Koivula, M., Strandén, I., Su, G. & Mäntysaari, E. A. (2012). Different methods to calculate genomic predictions-Comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP). Journal of Dairy Science, 95(7), 4065-4073.
- Legarra, A., Christensen, O.F., Aguilar, I. & Misztal, I. (2014). Single Step, a general approach for genomic selection. Livestock Science, 166, 54-65.
- Luan, T., Woolliams, J. A., Lien, S., Kent, M., Svendsen, M. & Meuwissen, T. H. (2009). The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation. Genetics, 183(3), 1119-1126.
- Masuda, Y., Misztal, I., Tsuruta, S., Legarra, A., Aguilar, I., Lourenco, D. A. L., Fragomeni, B. O. & Lawlor, T. J. (2016). Implementation of genomic recursions in single-step genomic best linear unbiased predictor for US Holsteins with a large number of genotyped animals. Journal of Dairy Science, 99(3), 1968-1974.
- Mehrban, H., Lee, D. H., Moradi, M. H., IlCho, C., Naserkheil, M. & Ibáñez-Escriche, N. (2017). Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genetics Selection Evolution, Jan 4, 49(1), 1-13.
- Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.
- Meuwissen, T. H., Svendsen, M., Solberg, T. & Ødegård, J. (2015). Genomic predictions based on animal models using genotype imputation on a national scale in Norwegian Red cattle. Genetics Selection Evolution, 47(1), 79-88.
- Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T. & Lee, D. H. (2002). BLUPF90 and related programs (BGF90).In:Proceedings of 7th World Congress on Genetics Applied to Livestock Production,19-23 Aug., Montpellier, France, pp. 1-2.
- Mrode, R. A. (2005). Linear models for the prediction of animal breeding values. (3rd ed.). CABI.
- Naghavi, M. R., Ghare Reazi, B. & Hosiny Salkade, G. H. (2007). Molecular marker. (2nd ed.). Tehran University press. (in Farsi)
- Nejati-Javaremi, A., Smith, C. & Gibson, J. P. (1997). Effect of total allelic relationship on accuracy of evaluation and response to selection. Animal Science, 7(5), 1738-1745.
- Neves, H. H., Carvalheiro, R. & Queiroz, S. A. (2012). A comparison of statistical methods for genomic selection in a mice population. BMC genetics, 13 (1), 100-117.
- Saatchi, M., Miraei-Ashtiani, S. R., Nejati Javaremi, A., Moradi shahr babak, M. & Mehrabani-yeganeh, H. (2010). The impact of information quantity and strength of relationship between training set and validation set on accuracy of genomic estimated breeding values. African Journal of Biotechnology, 9(4), 438-442.
- Saatchi, M., McClure, M. C., McKay, S. D., Rolf, M. M., Kim, J., Decker, J. E. & Bauck, S. (2011). Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics Selection Evolution, 43(1), 40-56.
- Sargolzaei, M. & Schenkel, F. S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5), 680-681.
- Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123, 218-223.
- Su, G., Madsen, P., Nielsen, U. S., Mäntysaari, E. A., Aamand, G. P., Christensen, O. F. & Lund, M. S. (2012). Genomic prediction for Nordic Red Cattle using one-step and selection index blending. Journal of dairy science, 95(2), 909-917.
- Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical population biology, 2(2), 125-141.
- Tiezzi, F. & Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution, 47(1), 24-37.
- Van Raden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of dairy science, 91 (11), 4414-4423.
- Wang, H., Misztal, I., Aguilar, I., Legarra, A. & Muir, W.M. (2012). Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research, 94, 73-83.
- Wang, H., Misztal, I., Aguilar, I., Legarra, A., Fernando, R. L., Vitezica, Z., Okimoto, R., Wing, T., Hawken, R. & Muir, M. (2014). Genome wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for6 week body weight in broiler chickens. Frontiers in Genetics, 5, 134-143.
- Zhang, Z., Liu, J., Ding, X., Bijma, P., de Koning, D. J. & Zhang, Q. (2010). Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PloS One, 5(9), 12648-12656.
|