تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,852 |
تعداد دریافت فایل اصل مقاله | 97,217,581 |
شبیهسازی خطر سیلاب با استفاده از مدل اتومات سلولی بر پایۀ GIS (مطالعۀ موردی: حوضۀ آبریز چرچر) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 6، دوره 48، شماره 4، دی 1395، صفحه 589-605 اصل مقاله (1.73 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2016.60829 | ||
نویسندگان | ||
سمیه خالقی1؛ لیلا ملکانی* 2 | ||
1استادیار گروه جغرافیای طبیعی، دانشکدة علوم زمین، دانشگاه شهید بهشتی | ||
2استادیار گروه عمران، دانشکدة فنی- مهندسی مرند، دانشگاه تبریز | ||
چکیده | ||
اتومات سلولی ابزاری است برای مدلسازی و شبیهسازی فرایندهایی که در جهان واقعی رخ میدهد؛ این ابزار همچنین در زمینة مدیریت بحران نیز کاربرد دارد. در این تحقیق از اتومات سلولی بر پایة GIS برای شبیهسازی سیلاب در حوضة آبریز چرچر در شمال غرب ایران استفاده شده است. نتایج نشان داد بیشترین مساحت حوضة چرچر دارای کاربری مرتع و گروه هیدرولوژیکی خاک D است و نفوذپذیریِ بسیار کمی دارد. ارتفاع رواناب در نیمة شرقی و جنوب شرقی حوضه، به دلیل قابلیت نفوذ کم و شیب زیاد، بالاست. همچنین، خطر سیلاب در مسیر رودخانه و اراضی اطراف آن، بهویژه در پاییندست جریان، زیاد است؛ به طوری که، علاوه بر کاربری اراضی، خاک، نفوذپذیری، و بارش، عامل شیب تأثیر بیشتری در تولید رواناب در حوضه گذارده است. سرانجام، مقایسة دبی محاسباتی با دبی مشاهداتی نشان داد مقادیر ضریب همبستگی دبی برای دو رویداد مورد بررسی بهترتیب برابر 82/0 و 70/0 است و درصد کم خطا نیز نشاندهندة کارایی بسیار مدل اتومات سلولی در پیشبینی دبی اوج سیلاب و زمان وقوع آن است. بنابراین، استفاده از اتومات سلولی در کنار GIS، علاوه بر سرعتبخشیدن به محاسبة رواناب، موجب افزایش نتایجِ دقیق نیز میشود. | ||
کلیدواژهها | ||
اتومات سلولی؛ حوضة آبریز چرچر؛ خطر سیلاب؛ GIS | ||
مراجع | ||
اعلمی، م.ت.؛ ملکانی، ل. و قربانی، م.ع. (1394). مدلسازی بارش- رواناب حوضة لیقوانچای با استفاده از مدل اتومات سلولی، پژوهشهای ژئومورفولوژی کمی، 3(4): 60 ـ 73. ثانیخانی، ه.؛ خراسانی، ع. و دینپژوه، ی. (1391). شبیهسازی رواناب و فرسایش خاک با استفاده از روش اتوماتای سلولی، مجلة پژوهش آب ایران، 6(11): 123 ـ 133. ضیائیان فیروزآبادی، پ.؛ موسوی، الف.؛ شکیبا، ع.ر. و ناصری، ح.ر. (۱۳۸۲). شبیهسازی رخداد سیلاب با استفاده از دادههای سنجش از دور و مدل سلولهای خودکار (مطالعة موردی بخشی از حوضة رودخانة تالار قائمشهر)، نشریة علمی- پژوهشی انجمنجغرافیاییایران، 1: 129 ـ۱۳۰. عباسی، م. (1393). برنامهنویسی شیءگرا در ArcGIS با زبان برنامهنویسی Python، انتشارات نوآور. فهیمیفر، الف.؛ بحری، م.ع. و بخشایش اقبالی، ن. (۱۳۸۵). تحلیل فرایند حرکت و لغزش زمینلغزهها بر پایة مدل اتومات سلولی، بیستوپنجمین گردهمایی علوم زمینشناسی، سازمان زمینشناسی کشور. Abbasi, M. (2014). Object-oriented programming in ArcGIS using Python language, First edition, Noavar Pablishing.
Abou El-Magd, I.; Hermas, E. and El Bastawesy, M. (2010). GIS-modeling of the spatial variability of flash flood hazard in Abu Dabbab catchment, Red Sea Region, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 13: 81-88.
Aboudagga, N. (2005). Simulations by cellular automata of the flood in Littorallagoon areas. Retrieved from (http://www.isnoldenburg.de/projects/earsel-abstracts2005/ABS-Aboudagga -Nader.html) in 2005/8/15. Alami, M.T; Malakan, L. and Ghorbani, M.A. (2015). Modeling of rainfall-runoff in Lighvan Chai catchment using cellular Automata, Quantitative Geomorphology Research, 4(4): 73-60.
Batty, M.; Xie, Y. and Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata, Computers, Environment and Urban Systems, 23: 205-233.
Cai, X.; Li, Y.; Guo, X. and Wu, W. (2014). Mathematical model for flood routing based on cellular automaton, Water Science and Engineering, 7(2): 133-142.
Cirbus, J. and Podhoranyi, M. (2011). Cellular automata for earth surface flow simulation, GIS Ostrava, 23. - 26. 1. 2011, Ostrava, pp. 1-8.
Cirbus, J. and Podhoranyi, M. (2013). Cellular Automata for the Flow Simulations on the Earth Surface, Optimization Computation Process, Applied Mathematics & Information Sciences, 7(6): 2149-2158.
Dewan, A.M.; Islam, M.M.; Kumamoto, T. and Nishigaki, M. (2007). Evaluating flood hazard for land-use planning in Greater Dhaka of Bangladesh using remote sensing and GIS techniques, Water Resour Manage, 21: 1601-1612.
Dhawale, A.W. (2013). Runoff estimation for Darewadi Watershed using RS and GIS, International Journal of Recent Technology and Engineering, 1(6): 46-50.
Douvinet, J.; Delahaye, D. and Langlois, P.(2006). Application of cellular automata modeling to analyze the dynamics of hyper-concentrated stream ows on loamy plateaux (Paris Basin, North-west France), The 7th Hydro-Informatics Conference, Sep 2006, France. AISH, 4000p., 2006. , pp. 1-8.
Douvinet, J.; Delahaye, D. and Langlois, P. (2007). Use of cellular automata in physical geography, 15th European Colloquium of Theoretical and Quantitative Geography, Montreux, Switzerland.
Ebrahimian, M. and Abdul Malek, I. (2009). Application of natural resources conservation service curve number method for runoff estimation with GIS in the Kardeh Watershed, Iran, European Journal of Scientific Research, 34 (4): 575-590.
Elkhrachy, I. (2015). Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA), The Egyptian Journal of Remote Sensing and Space Sciences, 18: 261-278.
Fahimifar, A .; Bahri, M.A. and Bakhshayesh Eghbali, N. (2007). Analysis of movement and slip landslide process based on cellular automata model, The twenty-fifth meeting of Geological Sciences, National Geological Organization.
Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S. and Rahmatullah, J. (2012). Techniques of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, 15: 135-141.
Hawkins, R.H.; Hjelmfelt, A.T. and Zevenbergen, A.W. (1985). Runoff probability, storm depth and curve numbers, J. Irrig. Drain. Eng. ASCE, 111: 330-340.
Jenson, S.K. and Domingue, J.O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis, Photogrammetric engineering and remote sensing, 54(11): 1593-1600.
Kenny, F. and Matthews, B. (2005). A methodology for aligning raster flow direction data with photogrammetrically mapped hydrology, Computers & Geosciences, 31(6): 768-779.
Kopp, S. and Noman, N. (2008). ArcGIS Spatial Analyst - Hydrologic Modeling, ESRI User Conference Technical Workshop, http://www.scdhec.gov/gis/presentations/ESRI_Conference_08/tws/workshops/tw_37.pdf, visited 25 April 2011.
Kumar RAI, P. and Mohan, K. (2014). Remote Sensing data & GIS for flood risk zonation mapping in Varanasi District, India. Forum geografic, Studii și cercetări de geografie și protecția mediului, 13: 25-33.
Mishra, S.K. and Singh, V.P. (2003). Soil Conservation Service Curve Number (SCS-CN) Methodology, Dordrecht, Germany: Kluwer Academic Publishers, ISBN1-4020-1132-6.
Patil, J.P.; Sarangi, A.; Singh, O.P.; Singh, A.K. and Ahmad, T. (2008). Development of a GIS Interface for Estimation of Runoff from Watersheds, Water Resources Management, 22(9): 1221-1239.
Ponce, V.M. and Hawkins, R.H. (1996). Runoff curve number: Has it reached maturity?, Journal of Hydrologic Engineering, 1(1): 11-19.
Ramasubramaniam, K.; Pugazhendi, V.; Anitha, A. and Dawn, S.S. (2008). Estimation of surface runoff using geospatial technology Kombai Micro Watershed – a case study, International Journal on Applied Bioengineering, 2(1): 25-31.
Rinaldi, P.R.; Dalponte, D.D.; Vénere, M.J. and Clausse, A. (2012). Graph-based cellular automata for simulation of surface flows in large plains, Asian Journal of Applied Science, 5: 224-231.
Shao, Q.; Weatherley, D.; Huang, L. and Baumgartl, T. (2015). RunCA: A cellular automata model for simulating surface runoff at different scales, Journal of Hydrology, 529: 816-829.
Sanny Khani, H.; Khorasani, A. and Dinpajouh, Y. (2013). Simulation of runoff and soil erosion using cellular automata, Journal OF Iran Water Research, 6(11): 133-123.
Schroeder, S.A.; Enz, J.W. and Larsen, J.K. (1990). Antecedent moisture conditions for North Dakota runoff predictions North Dakota, Farm Research, 48(0097-5338): 8-11.
Thilagavathi, G.; Tamilenthi, S.; Ramu, C. and Baskaran, R. (2011). Application of GIS in flood hazard zonation studies in Papanasam Taluk, Thanjavur District, Tamilnadu. Advances in Applied Science Research, 2(3): 574-585.
Van, T.P.D.; Carling, Paul A.; Coulthard, Tom J. and Atkinson Peter M. (2007). Cellular automata approach for flood forecasting in a bifurcation river system, PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-7 (401): 256.
Wu, H.; Yi, Y. and Chen, X. (2005). HydroCA: a watershed routing model based on GIS and cellular automata, Proceedings- Spie The International Society for Optical Engineering, 6199: 61990Q.
Xiao, B.; Wang, Q.H.; Fan, J.; Han, F.P. and Dai, Q.H. (2011). Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneit, Pedosphere, 21(6): 738-749.
Zhan, X. and Huang, M.L. (2004). ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps, Environmental Modeling & Software, 19: 875-879.
Zhao, G.J.; Gao, J.F;, Tian, P. and Tian, K. (2009). Comparison of two different methods for determining flow direction in catchment hydrological modeling, Water Science and Engineering, 2(4): 1-15.
Ziaeian Firouzabadi, P.; Mousavi, A.; Shakiba, A.R. and Naseri, H.R. (2004). Simulation of flood event using remote sensing data and cellular automats model (Case study: part of the Talar river catchment in Ghaemshahr city), Journal of Iran Geographical Society, I: 129-130.
| ||
آمار تعداد مشاهده مقاله: 1,933 تعداد دریافت فایل اصل مقاله: 1,431 |