تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,867 |
تعداد دریافت فایل اصل مقاله | 98,768,982 |
مقایسۀ توابع یادگیری شبکۀ عصبی در مدلسازی رواناب | ||
مجله اکوهیدرولوژی | ||
مقاله 14، دوره 3، شماره 4، دی 1395، صفحه 659-667 اصل مقاله (1.11 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2016.60374 | ||
نویسندگان | ||
محمد جواد زینلی1؛ سید رضا هاشمی* 2 | ||
1دانشجوی دکتری منابع آب، گروه علوم و مهندسی آب، دانشگاه بیرجند | ||
2استادیار گروه علوم و مهندسی آب، دانشگاه بیرجند | ||
چکیده | ||
پیشبینی دقیق جریان در رودخانهها یکی از ارکان مهم در مدیریت منابع آبهای سطحی بهویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیهاست. درحقیقت، حصول روشهای مناسب و دقیق در پیشبینی جریان رودخانهها را میتوان بهعنوان یکی از چالشهای مهم در فرایند مدیریت و مهندسی منابع آب دانست؛ اگرچه تحقیقات وسیعی در خصوص کاربرد روشهای متکی بر شبکههای عصبی مصنوعی دقت این روشها بر روشهای متداول آماری مانند روشهای اتورگسیو و میانگین متحرک ارائه شده است. در این تحقیقات برای یافتن بهترین ساختار برای شبکۀ عصبی تنها به تغییر تعداد لایههای پنهان و تعداد نورونها اکتفا میشود و بهدلیل پیچیدگی حاکم بر انتخاب و معماری شبکۀ مناسب، استفاده از آنها در عمل بهطور مناسب توسعه نیافته است. در این تحقیق تعداد 15 تابع یادگیری در شبکۀ عصبی بررسی شد و نتایج نشان داد در ساختار شبکه با یک لایۀ پنهان (ANN1) تابع یادگیری learnglv1، learnh و learnis بهترتیب با MSE برابر 000158/0، 000185/0 و 000188/0 و در مدل ساختار شبکه با دو لایۀ پنهان ANN2 توابع یادگیری learnh، learnsomb و learncon بهترتیب با MSE برابر 000154/0، 000173/0 و 000176/0، عملکرد مناسبتری نسبت به دیگر توابع یادگیری داشتهاند. از سوی دیگر در ده مرتبه اجرای دو مدل، دو تابع یادگیری learnsom و learngdm در مدل ANN1 و learnh و learnos در مدل ANN2، بیشترین تکرار را در بین بهترین توابع یادگیری، داشتهاند و بنابراین، هنگام استفاده از شبکۀ پسانتشار خطا (که تابع یادگیری آن learngdm است) بهتر است تعداد لایۀ پنهان بیشتر از یکی نباشد؛ زیرا در این صورت شانس رسیدن به جواب مناسب بیشتر خواهد بود، اما اگر بهدنبال زیادکردن عملکرد شبکه با افزایش تعداد لایۀ پنهان باشیم بهتر است با احتیاط از پیشفرض شبکه و بهطور مشخص از learngdm استفاده شود. . | ||
کلیدواژهها | ||
پیش بینی؛ توابع یادگیری؛ شبکۀ عصبی مصنوعی؛ معیار عملکرد | ||
مراجع | ||
منابع [1].Tokar AS, Markus M. Precipitation – runoff modeling using artificialneural network and conceptual models. Journal of Hydrologic Engineering. 2000;4:150-161.
[2].Razavi SS, Karamuoz M. in Prediction monthly river flows by using artificial aeural network. 10th studentsConferenceonCivil Engineering. Amirkabir University of Technology. 22 Oct 2003. [Persian]
[3].Fathi P, Mohammadi Y, Homayi M. Intelligent modeling of monthly flow time series into vahdat dam in sanandaj city. Journal of Water and Soil. 2009; 23(1):209-220. [Persian]
[4].Dorum A, Yarar A, FaikSevimli M, and Onucyildiz M. Modelling the rainfall-runoff data of susurluk basin. Expert Systems with Applications. 2010. 37: 6587-6593.
[5].Chua HC, and Wong SW. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. JournalHydrology. 2011. 399: 394-409.
[6].Patil S,Valunjkar, S. Study of different rainfall-runoff forecasting algorithms for better water consumption. International Conference on Computational Techniques and Artificial Intelligence. 2012. 327-330.
[7].Zeynali MJ, Nikbakht S, Mohammadezapour O. Prediction Input Flows to Mollasadra Reservoir by Useing Artificial Neural Network. 5th Iranian water resources management conference. ShahidbeheshtiUniversity.29 jul 2013. [Persian]
[8].Braddock RD,Kremmer ML, Sanzogni L. Feedforward artificial neural network model forforecasting rainfall-runoff. Journal of Environmental Sciences. 1998. 9:419-432.
[9]. Kia M. Soft Computing in MATLAB.Qian academic publishing. [Persian]
[10].www.mathwork.com
[11].Demuth H,Beale M. Neural network toolbox for use with MATLAB. Sixth printing Revised for Version 4. Pp:680.
[12].Hahangeer AR, Raeini M, Ahmadi MZ. Comparison of artificial neural networks (ANN) simulation of rainfall-runoff process with HEC-HMS model in Kardeh watershed. Journal of Water and Soil. 2008. 22(2):72-84. [Persian]
[13]. Kumar S, Merwade V, Kam J, Thurner K. Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology. 2009.374(1): 171-183.
[14].Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of control, signals and systems 2.4. 1989. 303-314.
[15].Hornik K, Stinchcombe M, White H. Multilayer feed-forward networks are universal approximators. Neural Networks. 1989. 2(5):359-366.
[16].Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: the state of the art. International Journalof Forecasting. 1998. 14(1):35-62.
[17].Noori R, Abdoli MA, Ghasrodashti AA, JaliliGhazizade M. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad.Environmental Progress & Sustainable Energy. 2009. 28 (2):249-258.
[18].Nikmanesh MR. Prediction of Monthly Average Discharge Using the Hybrid Model of Artificial Neural Network and Wavelet Transforms (Case Study: Kor River Pol-e-Khan Station). Journal of Water and Soil Conservation. 2015. 22(3):231-239. [Persian]
[19].Noori R, Farokhnia A, Morid S, RiahiMadvar H. Effect of Input Variables Preprocessing in Artificial Neural Network on Monthly Flow Prediction by PCA and Wavelet Transformation. Journal of Water & Wastewater. 2008. 20(69):1-22 | ||
آمار تعداد مشاهده مقاله: 1,195 تعداد دریافت فایل اصل مقاله: 1,912 |