تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,984 |
تعداد دریافت فایل اصل مقاله | 97,217,764 |
Aggregation of adult and fetal hemoglobin by ingested nitrate anions | ||
Progress in Biological Sciences | ||
مقاله 10، دوره 5، شماره 2، مهر 2015، صفحه 261-271 اصل مقاله (2.78 M) | ||
نوع مقاله: Original Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/pbs.2015.56043 | ||
نویسندگان | ||
Rezan Amjadi1؛ Hedayatollah Ghourchian* 1؛ Ali Akbar Moosavi-Movahedi1؛ Aghdas Banaie2 | ||
1Laboratory of Microanalysis, Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tnarhe, Iran | ||
2Laboratory of Microanalysis, Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tnarhe, Iran; and Research Institute of Applied Science, Academic Center of Education, Culture and Research (ACECR), University of Shahid Beheshti, P.O. Box ,Tehran, Iran | ||
چکیده | ||
The ingested nitrates sourced from tap water, food, chemicals and pharmaceuticals are converted to nitrites in the body surfaces by bacteria and then, the nitrite ions can lead the structural changing in hemoglobin. In the present work, aggregation of the purified hemoglobin in adult (HbA) and in fetus or newborn (HbF) in the presence of nitrite ions were studied. Hemoglobin aggregation was performed chemically in the presence of 10 mg/l nitrite ions and examined by UV-Vis spectrophotometer at 360 nm wavelength. The extrinsic fluorimetric measurements indicated that repulsive electrostatic interaction between nitrite anions and negative charged groups of both types of HbA and HbF molecules leads to expose the hydrophobic patch of the protein molecules. Moreover, the α-helix to β-strand transition in both types of hemoglobins shown by circular dichroism support aggregation process among this protein. However, at natural pH, the protonated amino group of Gly in HbF tends to bind to nitrite anions more than the unprotonated forms of Val residue in HbA. The drastic slop of aggregation plot and shorter lag time of HbF relative to HbA demonstrated more aggregation of former protein. | ||
کلیدواژهها | ||
adult hemoglobin؛ aggregation؛ nitrate ions؛ fetal hemoglobin؛ nitrite ions | ||
مراجع | ||
1. A. Dong, T.W. Randolph, J.F. Carpenter, Entrapping intermediates of thermal aggregation in α- helical proteins with low concentration of guanidine hydrochloride, J. Biol. Chem., 275 (2000) 27689-27693. 2. X. Zhu, A.K. Raina, G. Perry, M.A. Smith, Alzheimer's disease: the two-hit hypothesis, The Lancet Neurology, 3 (2004) 219-226. 3. M. Baba, S. Nakajo, P.-H. Tu, T. Tomita, K. Nakaya, V. Lee, J.Q. Trojanowski, T. Iwatsubo, Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies, The American journal of pathology, 152 (1998) 879. 4. C. Olanow, W. Tatton, Etiology and pathogenesis of Parkinson's disease, Annu. Rev. Neurosci., 22 (1999) 123-144. 5. J. Buxbaum, G. Gallo, Nonamyloidotic monoclonal immunoglobulin deposition disease: lightchain, heavy-chain, and light-and heavy-chain deposition diseases, Hematol. Oncol. Clin. North Am., 13 (1999) 1235-1248. 6. J.N. Buxbaum, J.V. Chuba, G.C. Hellman, A. Solomon, G.R. Gallo, Monoclonal immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and their relation to light chain amyloidosis: clinical features, immunopathology, and molecular analysis, Ann. Intern. Med., 112 (1990) 455-464. 7. A.L. Fink, Protein aggregation: folding aggregates, inclusion bodies and amyloid, Fold. Des., 3 (1998) R9-R23. 8. R. Wetzel, B.A. Chrunyk, Inclusion body formation by interleukin-1β depends on the thermal sensitivity of a folding intermediate, FEBS Lett., 350 (1994) 245-248. 9. A.M. Morris, M.A. Watzky, R.G. Finke, Protein aggregation kinetics, mechanism, and curvefitting: a review of the literature, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794 (2009) 375-397. 10. J.S. Philo, T. Arakawa, Mechanisms of protein aggregation, Curr. Pharm. Biotechnol., 10 (2009) 348-351. 11. D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry, Macmillan, 2008. 12. S. De, A. Girigoswami, A fluorimetric and circular dichroism study of hemoglobin—Effect of pH and anionic amphiphiles, J. Colloid Interface Sci., 296 (2006) 324-331. 13. A. Stephens, M. Angastiniotis, E. Baysal, V. Chan, B. Davis, S. Fucharoen, P. Giordano, J. Hoyer, A. Mosca, B. Wild, ICSH recommendations for the measurement of Haemoglobin F, Int. J. Lab. Hematol., 34 (2012) 14-20. 14. A.N. Schechter, Hemoglobin research and the origins of molecular medicine, Blood, 112 (2008) 3927-3938. 15. J. COTTER, H. PRYSTOWSKY, Fetal Blood Studies: XIX. Adult and Fetal Hemoglobin Levels of Human Fetal Blood in Term Pregnancy and in Prolonged Pregnancy, Obstet. Gynecol., 22 (1963) 745-750. 16. E. Lissi, Autocatalytic oxidation of hemoglobin by nitrite: a possible mechanism, Free Radic. Biol. Med., 24 (1998) 1535-1536. 17. N.E. Camp, Methemoglobinemia, J. Emerg. Nurs., 33 (2007) 172-174. 18. J.O. Lundberg, E. Weitzberg, M.T. Gladwin, The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics, Nature Reviews Drug Discovery, 7 (2008) 156-167. 19. N.G. Hord, Y. Tang, N.S. Bryan, Food sources of nitrates and nitrites: the physiologic context for potential health benefits, The American journal of clinical nutrition, 90 (2009) 1-10. 20. R.P. Smith, The blue baby syndromes, Am. Sci., 97 (2009) 94-96. 21. A. Keszler, B. Piknova, A.N. Schechter, N. Hogg, The Reaction between Nitrite and Oxyhemoglobin A MECHANISTIC STUDY, J. Biol. Chem., 283 (2008) 9615-9622. 22. S. Muntoni, P. Cocco, S. Muntoni, G. Aru, Nitrate in community water supplies and risk of childhood type 1 diabetes in Sardinia, Italy, Eur. J. Epidemiol., 21 (2006) 245-247. 23. A. Coss, K.P. Cantor, J.S. Reif, C.F. Lynch, M.H. Ward, Pancreatic cancer and drinking water and dietary sources of nitrate and nitrite, Am. J. Epidemiol., 159 (2004) 693-701. 24. J.O. Lundberg, M. Carlström, F.J. Larsen, E. Weitzberg, Roles of dietary inorganic nitrate in cardiovascular health and disease, Cardiovasc. Res., 89 (2011) 525-532. 25. A. Riggs, [1] Preparation of blood hemoglobins of vertebrates, Methods Enzymol., 76 (1981) 5-29. 26. T. Yagami, B.T. Ballard, J.C. Padovan, B.T. Chait, A.M. Popowicz, J.M. Manning, N-terminal contributions of the γ-subunit of fetal hemoglobin to its tetramer strength: Remote effects at subunit contacts, Protein Sci., 11 (2002) 27-35. 27. P.S. Santiago, F. Moura, L.M. Moreira, M.M. Domingues, N.C. Santos, M. Tabak, Dynamic light scattering and optical absorption spectroscopy study of pH and temperature stabilities of the extracellular hemoglobin of Glossoscolex paulistus, Biophys. J., 94 (2008) 2228-2240. 28. J. Badraghi, A.A. Moosavi-Movahedi, A.A. Saboury, R. Yousefi, A. Sharifzadeh, J. Hong, T. Haertlé, A. Niasari-Naslaji, N. Sheibani, Dual behavior of sodium dodecyl sulfate as enhancer or suppressor of insulin aggregation and chaperone-like activity of camel αS 1-casein, Int. J. Biol. Macromol., 45 (2009) 511-517. 29. J. Badraghi, R. Yousefi, A.A. Saboury, A. Sharifzadeh, T. Haertlé, F. Ahmad, A.A. Moosavi- Movahedi, Effect of salts and sodium dodecyl sulfate on chaperone activity of camel αS 1-CN: Insulin as the target protein, Colloids and Surfaces B: Biointerfaces, 71 (2009) 300-305. 30. S. Benjwal, S. Verma, K.H. Röhm, O. Gursky, Monitoring protein aggregation during thermal unfolding in circular dichroism experiments, Protein Sci., 15 (2006) 635-639. 31. A. Banaei, H. Ghourchian, P. Rahimi, A.A.M. Movahedi, R. Amjadi, Different electrochemical behavior of adult and fetal hemoglobin at ionic liquid-carbon nanotube nanocomposite, Journal of the Iranian Chemical Society, (2014) 1-8. 32. S. Rawat, R. Singh, R.P. Singh, Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes, (2012). 33. A. Machha, A.N. Schechter, Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits, Eur. J. Nutr., 50 (2011) 293-303. 34. A. Nigen, J. Manning, J. Alben, Oxygen-linked binding sites for inorganic anions to hemoglobin, J. Biol. Chem., 255 (1980) 5525-5529. 35. W. Chen, A. Dumoulin, X. Li, J.C. Padovan, B.T. Chait, R. Buonopane, O.S. Platt, L.R. Manning, J.M. Manning, Transposing sequences between fetal and adult hemoglobins indicates which subunits and regulatory molecule interfaces are functionally related, Biochemistry, 39 (2000) 3774-3781. 36. K.A. Markossian, I.K. Yudin, B.I. Kurganov, Mechanism of suppression of protein aggregation by α-crystallin, International journal of molecular sciences, 10 (2009) 1314-1345. 37. S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function, Current protein and peptide science, 1 (2000) 349-384. 38. C. Jun, Y. Xue, R. Liu, M. Wang, Study on the toxic interaction of methanol, ethanol and propanol against the bovine hemoglobin (BHb) on molecular level, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79 (2011) 1406-1410. 39. S. Zolghadri, A. Saboury, A. Golestani, A. Divsalar, S. Rezaei-Zarchi, A. Moosavi-Movahedi, Interaction between silver nanoparticle and bovine hemoglobin at different temperatures, Journal of Nanoparticle Research, 11 (2009) 1751-1758. 40. Q. Shao, P. Wu, P. Gu, X. Xu, H. Zhang, C. Cai, Electrochemical and spectroscopic studies on the conformational structure of hemoglobin assembled on gold nanoparticles, The Journal of Physical Chemistry B, 115 (2011) 8627-8637. 41. L. Wang, R. Liu, Z. Chi, B. Yang, P. Zhang, M. Wang, Spectroscopic investigation on the toxic interactions of Ni 2+ with bovine hemoglobin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2010) 155-160. 42. V. Vetri, V. Militello, Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin, Biophys. Chem., 113 (2005) 83-91. | ||
آمار تعداد مشاهده مقاله: 1,943 تعداد دریافت فایل اصل مقاله: 1,854 |