تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,704 |
تعداد دریافت فایل اصل مقاله | 97,217,434 |
Isolation and identification of native sulfuroxidizing bacterium capable of uranium extraction | ||
Progress in Biological Sciences | ||
مقاله 6، دوره 5، شماره 2، مهر 2015، صفحه 207-221 اصل مقاله (6.56 M) | ||
نوع مقاله: Original Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/pbs.2015.56039 | ||
نویسندگان | ||
Faezeh Fatemi* 1؛ Abbas Rashidi2؛ Samaneh Jahani1 | ||
1Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, I.R. Iran | ||
2Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
Bioleaching is the extraction of metals from their ores through the use of microorganisms. In this process, the use of native bacteria leads to achieve more yields of metals. So, in the present study, native sulfur-oxidizing bacterium in potentiality of uranium extraction was isolated from Ghachin mine in Iran and identified by partial gene sequencing. For this purpose, the water samples were collected from Ghachin mine and cultivated in Starkey medium. In following, the isolate was inoculated into individual Starkey plates and incubated until the colonies indicating the purified bacterium appeared. Then, the identification was carried out based on phenotypic characteristics and 16s rDNA sequencing. After that, bioleaching of uranium experiments carried out using uranium ore at 2.5 and 5% pulp densities. The result showed that after 15 days of incubation, the bacteria in the fresh samples was grown. Following 5-7 days of the plate's incubation, we obtained the single purified colonies of the bacteria. On the basis of 16s rDNA nucleotide sequencing, the bacteria showed 99.71% similarity to A. thiooxidans ATCC 19377. Besides, the bioleaching experiments indicated that the bacterium is capable of uranium extraction in 2.5 and 5% pulp densities during 3 and 5 days. In conclusion, in this study, for the first time, we isolated the native sulfur-oxidizing bacterium capable of uranium extraction, from uranium mine of Gachin in Bandar Abbas, Iran. | ||
کلیدواژهها | ||
Identification؛ isolation؛ sulfur-oxidizing bacterium؛ Uranium | ||
مراجع | ||
1. Borisovich, U.A., Mihaylovich, K.A. (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. Journal of Radioanalytical and Nuclear Chemistry., 295, 151-156. 2. Rawlings, E. (1997) Biomining: theory, microbes and industrial processes. Bioscience, Georgetown, Tex. 3. Glazer, A.N., Nikaido, H. (1995) Application of biotechnology for mineral processing. Microbial biotechnology., 268-287. 4. Steudel, R. (1989) On the nature of the "elemental sulfur" (S0) produced by sulfuroxidizing bacteria. In: Schegel, H.G., Bowien, B. (Eds.), A model for S0 globules. Biology of Autotrophic Bacteria. Science Tech Publication., 289-303. 5. Bond, P.L., Druschel, G.K., Banfield, J.F. (2000) Comparison of acid mine drainage microbial communities in physically and geochemicaly distinct ecosystems. Applied and Environmental Microbiology., 66, 4962-4971. 6. Dopson, M., Craig, B.A., Koppineedi, P., Philip, L. (2003) Growth in sulfidic mineral environments, metal resistance mechanisms in acidophilic micro-organisms. Microbiology., 149, 1959-1970. 7. Waksman, S.A., Joffe, J.S. (1922) The chemistry of the oxidation of sulfurby microorganisms to sulfuric acid and transformation of insoluble phosphates into soluble forms. Jour. Biol. Chem., 50, 35-45. 8. Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W. (2003) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulphide oxidation. Appl Microbiol Biotechnology., 63, 239-248. 9. Sand, W., Gehrke, T. (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol., 157, 49-56. 10. Bergamo, R.F., Novo, M., Verissimo, R., Paulino, L., Stoppe, N., Sato, M., Manfio, G., Prado, P., Garsia, O., Ottoboni, L. (2004) Differentiation of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans strains based on 16s-23s rDNA spacer polyphormism analysis. Res. Microbiol., 155, 559-567. 11. Rawlings, E. (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories.,4-13. 12. Ageeva, S.N., Kondrat'eva, T.F., Karavaiko, G.I. (2001) Phenotypic characteristics of Thiobacillus ferrooxidans strains. Mikrobiologiia., 70, 226-234. 13. Altschul, S.F., Gish, W,. Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol., 215, 403-410. 14. DSMZ. List of media. (2002) Deutsche Sammlung zon Mikroorganismen und Zellkulturen Gmb Germany. 15. Starkey, R.L., Collins, V.G. (1923) Autotrophs. Methods in Microbiology., 38, 55-73. 16. Waksman, S.A. (1922) Microorganisms concerned in oxidation of sulur in the soil. J Bacteriol., 7(6), 605-608. 17. Shahroz, K., Faizul, H., Fariha, H., Kausar, S., Rahat, U. (2012) Growth and Biochemical Activities of Acidithiobacillus thiooxidans Collected from Black Shale. Microbiology Research., 2, 78-83. 18. Gram, H.C. (1884) "Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten" (in German). Fortschritte Medizin., 185-189. 19. Escobar, B., Bustos, K., Morales, G., Salazar, O. (2008) Rapid and specific detection of Acidithiobacillus ferrooxidans and leptospirillum ferrooxidans by PCR. Hydrometalurgy., 92, 102-106. 20. Ai, O., Satoshi, W., Tadayoshi, K., Tsuyoshi, S., Kazuo, K. (2005) Diversity of 16s ribosomal DNA-defined bacterial population in acid rock drainage from japanese pyrite mine. Bioscience and Bioengineering., 100, 644–652. 21. Leloup, J., Loy, A., Knab, N.J., borowski ,C., wagner, M., Jorgensen, B.B. (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol., 9, 131-142. 22. Sambrook, J., Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press. 23. Altschul, S.F., Madden, T.L., Schaeffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 33-89. 24. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., Lim, Y.W. (2007) EzTaxon: a webbased tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol., 57, 2259-2261. 25. Ronald, M.A. (1997) Handbook of Microbiological Media. Second Ed. Robert Stern Publisher, New York. 26. Underwood, A.L., Day, R.A. (1991) Quantitative Analysis. Prentice Hall, London., 645-646. 27. Ryu, H.W., Cho, K.S., Chang, Y.K., Kim, S.D., Mori, T. (1995) Refinement of Low-Grade Clay by Microbial Removal of Sulfur and Iron Compounds Using Thiobacillus ferrooxidans. Journal of Fermentation and Bioengineering., 80, 46. 28. Vidyalakshmi, R., Srida, R. (2006) Isolation and characterization of sulphur oxidizing bacteria. Journal of Culture Collections., 5, 73-75. 29. Ward, G. (1916) Laboratory Manual In General Microbiology, 1st edn. New York. 30. Rojas-avelizapa, N.G., Gómez-ramírez, M., Hernández-gama, R., Aburto, J., García, D.E. (2013) Isolation and Selection of Sulfur-oxidizing Bacteria for the Treatment of Sulfur-containing HazardousWastes. Chem. Biochem. Eng. Q., 27(1), 109-117. 31. Qiang, L.I., Cong, W., Baobin, L., Cunmin, S., Fei, D., Cunjiang, S., Shufang, W. (2012) Isolation of Thiobacillus spp. and its application in the removal of heavy metals from activated sludge. African Journal of Biotechnology., 97, 16336-16341. 32. Sivaji, R., Leslie, R. (1971) Berger G. The requirement of low pH for growth of Thiobacillus thiooxidans . Archiv für Mikrobiologie., 79, 338-344. 33. Carmen, M. (2010) The taxonomic and physiologic diversity of the acidophilic chemolithotrophic bacteria of the genus thiobacillus used in ores solubilization processes. Trav. Inst. Spéol. «Émile Racovitza».,97-112. 34. Selman, A., Waksman, S.A. (1922) Microorganisms concerned in the oxidation of sulfur in the soil. New Jersey Agricultural Experiment Station, Department of Soil Chemistry and Bacteriology., 84, 605-608. 35. Ryu, H.W., Moon, H.S., Lee, E.Y., Cho, K.S., Choi, H. (2003) Leaching Characteristics of Heavy Metals from Sewage Sludge by Acidithiobacillus thiooxidans MET. J. Environ. Qual., 32, 751-759. 36. Vishniac, W.V. (1974) The genus Thiobacillus. Bergey's manual of determinative bacteriology, 8th edn. 37. Kempner, E. (1966) Acid Production by Thiobacillus thiooxidans. Journal of Bacteriology., 92, 1842-1843. 38. Rao, T. (2005) Advances in Water and Wastewater Treatment. American Society of Civil Engineers. 39. Swinnen, I.A.M., BernaertS, K., Dens, E.J.J., Geeraerd, A.H., Vanimpe, J.F. (2004) Predictive modelling of the microbial lag phase: a review. Int. J. Food Microbiol., 94, 137-159. 40. Al-qadiri, H., Al-alami, N., Lin, M., Al-holy, M., Cavinato, A., Rasco, B. (2008) Studying of the bacterial growth phases using fourier transform infrared spectroscopy and multivariate analysis. Journal of Rapid Methods & Automation in Microbiology., 16, 73-89. 41. Tsukasa, I., Kenichi, S., Satoshi, O. (2004) Isolation, Characterization, and In Situ Detection of a Novel Chemolithoautotrophic Sulfur-Oxidizing Bacterium in Wastewater Biofilms Growing under Microaerophilic Conditions. Appl Environ Microbiol., 70(5), 3122-3129. 42. Paulino, L., Rog´erio, F., Maricilda, P., Oswaldo, G., Gilson, P., Laura, M. (2001) Molecular characterization of Acidithiobacillus ferrooxidans and A. thiooxidans strains isolated from mine wastes in Brazil. Antonie van Leeuwenhoek., 80, 65–75. 43. Xia, J., Peng, A., He, H., Yang, Y., Liu, X., Qiu, G. (2004) Acidithiobacillus albertensis BY-05, a new strain for bioleaching of metal sulfides ores. Project (50321402) supported by Nature Science Foundation of China for innovation research group; Project (2004CB619204) supported by National Major Basic Research Item, China. 44. Yongqing, N., Dongshi, W., Kaiyu, H. (2008) 16s rDNA and 16s–23s internal transcribed spacer sequence analyses reveal inter- and intraspecific Acidithiobacillus phylogeny. Microbiology., 154, 2397-2407. 45. Scott, P. (2013) What is Biomining. Wise Geek. 46. Acevedo, F., Gentina, J. (1989) Process engineering aspects of the bioleaching of copper ores. Bioprocess Engineering., 4, 223-229. 47. Newman, L.A., Doty, S.L., Gery, K.L., Heilman, P.E., Muiiznieks, I., Shang, T.Q., Siemieniec, S.T., Strand, S.E., Wang, X., Wilson, A.M., Gordon, M.P. (1998) Phytoremediation of organic contaminants: a review of phytoremediation research at the University of Washington. J Soil Commun., 7, 531-542. 48. Ownby, D.R., Newman, M.C. (2003) Advances in quantitative ion character-activity relationships (QICARs): Using metal-ligand binding characteristics to predict metal toxicity. QSAR & Combinatorial Science., 22(2), 241-246. | ||
آمار تعداد مشاهده مقاله: 2,205 تعداد دریافت فایل اصل مقاله: 3,934 |