تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,031 |
تعداد دریافت فایل اصل مقاله | 97,216,862 |
Dendrosomal nano-curcumin; The novel formulation to improve the anticancer properties of curcumin | ||
Progress in Biological Sciences | ||
مقاله 1، دوره 5، شماره 2، مهر 2015، صفحه 143-158 اصل مقاله (3.67 M) | ||
نوع مقاله: Original Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/pbs.2015.55525 | ||
نویسندگان | ||
Maryam Tahmasebi Birgani* 1؛ Vahid Erfani-Moghadam2؛ Esmail Babaei3؛ Farhood Najafi4؛ Mina Zamani5؛ Molood Shariati5؛ Shima Nazem5؛ Baharak Farhangi5؛ Paria Motahari5؛ Majid Sadeghizadeh5 | ||
1Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran | ||
2Department of Biotechnology, Faculty of advanced Medical Technology, Golestan University of Medical sciences, Gorgan, Iran | ||
3Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran | ||
4Department of Resin and Additives, Institute for Color Science and Technology | ||
5Department of Genetics, Faculty of biological sciences, Tarbiat Modares Univesity of Tehran, Tehran, Iran | ||
چکیده | ||
Curcumin is a hydrophobic polyphenol extracted from the plant curcuma longa with established anticancer properties. However, curcumin benefits have been impaired by its very low water solubility, low absorption, rapid metabolism and clearance from the body. Recently, nanotechnology promises to be helpful in development of drugs delivery systems by recent advances in macromolecular design of nanocarriers. In this review, we present the novel generation of nano-vehicles termed dendrosomes which are readily synthesized from esterification of oleic acid and polyethylene glycol residues. Dendrosomes efficiently encapsulate curcumin in a spherical micellar or polymersome structures which leads to increase aqueous solubility of this hydrophobic agent and higher bioavailability of curcumin. Anticancer potency of this nanoformulation was confirmed in different mouse and human cancer cells including fibrosarcoma, colon, glioblastoma, bladder, gastric, breast and hepatocellular carcinoma in vitro and vivo. It has also demonstrated that this nano preparation has no cytotoxicity effects on normal cells. Finally, these results introduce dendrosomal curcumin as potent anti-tumor agent although further clinical examinations are needed. | ||
کلیدواژهها | ||
Cancer؛ Curcumin؛ dendrosomal curcumin؛ dendrosome؛ Nanotechnology | ||
مراجع | ||
1. Ma, Z., Haddadi, A., Molavi, O., Lavasanifar, A., Lai, R. and Samuel, J. (2008) Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A, 86, 300-310. 2. Xiong, X.B., Binkhathlan, Z., Molavi, O. and Lavasanifar, A. (2012) Amphiphilic block copolymers: preparation and application in nanodrug and gene delivery. Acta Biomater, 8, 2017- 2033. 3. Adams, M.L., Lavasanifar, A. and Kwon, G.S. (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci, 92, 1343-1355. 4. Tong, R. and Cheng, J. (2007) Anticancer Polymeric Nanomedicines. Polymer Reviews, 47, 345- 381. 5. Kim, H., Kang, Y.J., Kang, S. and Kim, K.T. (2012) Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. J Am Chem Soc, 134, 4030-4033. 6. Lee, J.S., Groothuis, T., Cusan, C., Mink, D. and Feijen, J. (2011) Lysosomally cleavable peptidecontaining polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials, 32, 9144-9153. 7. Mura, S., Nicolas, J. and Couvreur, P. (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 12, 991-1003. 8. Hamidi, M., Shahbazi, M.A. and Rostamizadeh, K. (2012) Copolymers: efficient carriers for intelligent nanoparticulate drug targeting and gene therapy. Macromol Biosci, 12, 144-164. 9. Antonietti, M. and Förster, S. (2003) Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Advanced Materials, 15, 1323-1333. 10. Chen, W., Meng, F., Cheng, R. and Zhong, Z. (2010) pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release, 142, 40-46. 11. Discher, D.E. and Ahmed, F. (2006) Polymersomes. Annu Rev Biomed Eng, 8, 323-341. 12. Sarbolouki, M.N., Sadeghizadeh, M., Yaghoobi, M.M., Karami, A. and Lohrasbi, T. (2000) Dendrosomes: a novel family of vehicles for transfection and therapy. Journal of Chemical Technology and Biotechnology, 75, 919-922. 13. Sadeghizadeh, M., Ranjbar, B., Damaghi, M., Khaki, L., Sarbolouki, M.N., Najafi, F., Parsaee, S., Ziaee, A.A., Massumi, M. and Lubitz, W. (2008) Dendrosomes as novel gene porters‐III. Journal of chemical technology and biotechnology, 83, 912-920. 14. Tahmasebi Mirgani, M., Isacchi, B., Sadeghizadeh, M., Marra, F., Bilia, A.R., Mowla, S.J., Najafi, F. and Babaei, E. (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. International journal of nanomedicine, 9, 403-417. 15. Erfani-Moghadam V, Nomani A, Zamani M, Yazdani Y, Najafi F and M, S. (2014) A novel diblock copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Int J Nanomed, 2014:9(1) 5541—5554. 16. Pourasgari, F., Ahmadian, S., Salmanian, A.H., Sarbolouki, M.N. and Massumi, M. (2009) Low
cytotoxicity effect of dendrosome as an efficient carrier for rotavirus VP2 gene transferring into a human lung cell line. Molecular biology reports, 36, 105-109. 17. Karimi, M. (2013), In 1st Tabriz International Life Science Conference and 12th Iran Biophysical Chemistry Conference. Tabtiz university of medical sciences, in press. 18. Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A.B. and Aggarwal, B.B. (2008) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer letters, 267, 133-164. 19. Goel, A., Kunnumakkara, A.B. and Aggarwal, B.B. (2008) Curcumin as “< i> Curecumin”: From kitchen to clinic. Biochemical pharmacology, 75, 787-809. 20. Ravindran, J., Prasad, S. and Aggarwal, B.B. (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS journal, 11, 495-510. 21. Anand, P., Kunnumakkara, A.B., Newman, R.A. and Aggarwal, B.B. (2007) Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4, 807-818. 22. Yallapu, M.M., Jaggi, M. and Chauhan, S.C. (2013) Curcumin nanomedicine: a road to cancer therapeutics. Current pharmaceutical design, 19, 1994. 23. Babaei, E., Sadeghizadeh, M., Hassan, Z.M., Feizi, M.A.H., Najafi, F. and Hashemi, S.M. (2012) Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. International immunopharmacology, 12, 226-234. 24. Tahmasebi Mirgani, M., Sadeghizadeh, M., Najafi, F. and Mowla, S.J. (2013) Dendrosomal curcumin induced apoptosis by suppression of pluripotency genes in 5637 bladder cancer cells. Modares Journal of Medical Sciences: Pathobiology, 16, 23-39. 25. Esmatabadi, M.J.D., Farhangi, B., Safari, Z., Kazerooni, H., Shirzad, H., Zolghadr, F. and Sadeghizadeh, M. (2015) Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression. Asian Pacific Journal of Cancer Prevention, 16, 2473-2481. 26. Erfani-Moghadam V, Nomani A, Yazdani Y, Najafi F and Sadeghizadeh M (2014) Design and Synthesis of a Novel Dendrosome and a PEGylated PAMAM Dendrimer Nanocarrier to Improve the Anticancer effect of Turmeric (Curcuma longa) Curcumin. Journal of Medical Science:Pathobioligy, 17, 63-77 27. Pearson, R.T., Avila-Olias, M., Joseph, A.S., Nyberg, S. and Battaglia, G. (2013) Smart Polymersomes: Formation, Characterisation and Applications, chapter 7 at "Smart Materials for Drug Delivery". Royal Society of Chemistry, Cambridge, United Kingdom. 28. Erfani-Moghadam, V., (2014) Design and application of some dendritic nanocarriers on anticancer properties of curcumin from Turmeric (Curcuma longa). PhD thesis, Tarbiat Modares University, Tehran, Iran. 29. Alizadeh, A.M., Sadeghizadeh, M., Najafi, F., Ardestani, S.K., Erfani-Moghadam, V., Khaniki, M., Rezaei, A., Zamani, M., Khodayari, S. and Khodayari, H. (2014) Encapsulation of Curcumin in Diblock Copolymer Micelles for Cancer Therapy. BioMed Research International, in press. 30. Alireza Panahi, R.N.S.a.M.S. (2012) Evaluation of Apoptosis Induction on Gastric Cancer AGS Cells Made by Polymer Nano Curcumin. 2, 1, 200-207. 31. Birgani, M.T. (2012). Study of the Effects of Dendrosomal-Curcumin on Cell Cycle and Pluripotency of Tumor Cell Lines and Adult Stem Cells by Measuring the Expression Profile of OCT4, SOX-2, Nanog, miR-302 and miR-145. PhD thesis, Tarbiat Modares University, Tehran, Iran. 32. Jordan, C.T. (2004) Cancer stem cell biology: from leukemia to solid tumors. Current opinion in cell biology, 16, 708-712. 33. Zamani, M., Sadeghizadeh, M. and Behmanesh, M. (2014) Dendrosomal Curcumin Upregulates Expression of the Long Non-coding RNA gene MEG3 in U87MG Glioblastoma Cells. Modares Journal of Medical Sciences: Pathobiology, 17, 39-54. 34. amani, M., Sadeghizadeh, M., Behmanesh, M. and Najafi, F. (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine, 22, 961-967. 35. Shariati, M. (2013). Investigation of polymeric nanocurcumin inhibitory effect on the Human Telomerase Reverse Transcriptase gene (hTERT) promoter through induction of TGFβ1 signaling pathway in hepatocarcinoma cell line (Huh7). MSc thesis. Tarbiat Modares University, Tehran, Iran. 36. Komata, T., Kanzawa, T., Kondo, Y. and Kondo, S. (2002) Telomerase as a therapeutic target for malignant gliomas. Oncogene, 21, 656-663. 37. Najmeh Ranji, A.P.a.M.S. (2010) Study the effects of Dendrosomal curcumin in induction apoptosis on cancer and stem cells. Modares Journal of Medical Sciences: Pathobiology, 4, 37-49. 38. Najmeh Ranji, A.P.a.M.S. (2014) Investigation of Survivin and hTERT gene expression in human gastric adenocarcinoma cell line (AGS) treated by nano Curcumin. Journal of cellular and Molecular researches 27, 233-241. 39. Farhangi, B., Alizadeh, A.M., Khodayari, H., Khodayari, S., Dehghan, M.J., Khori, V., Heidarzadeh, A., Khaniki, M., Sadeghiezadeh, M. and Najafi, F. (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. European journal of pharmacology, 758, 188-196. 40. Nazem, S. (2012). Study the effects of nano-Curcumin as a stress inhibitor on Human Mesenchymal Stem cells exposed to hydroquinone, MSc thesis. Tarbiat Modares University, Tehran, Iran. 41. Motahari, P., Sadeghizadeh, M., Behmanesh, M., Sabri, S. and Zolghadr, F. (2015) Generation of stable ARE-driven reporter system for monitoring oxidative stress. DARU Journal of Pharmaceutical Sciences, 23, 1-7. 42. Babaei, E. (2011), study of the anti-cancerous effect of dendrosomal nano-curcumin in vitro and in vivo. Tarbiat Modares University, Tehran, Iran. | ||
آمار تعداد مشاهده مقاله: 3,283 تعداد دریافت فایل اصل مقاله: 4,662 |