تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,644 |
تعداد دریافت فایل اصل مقاله | 97,224,699 |
تخمین تمرکز ذرات معلق (PM10) در جو با استفاده از دادههای سنجش از دور ماهوارهای و زمینپایه و پراسنجهای هواشناختی: کاربست شبکۀ عصبی مصنوعی | ||
فیزیک زمین و فضا | ||
مقاله 13، دوره 41، شماره 3، مهر 1394، صفحه 499-510 اصل مقاله (1020.14 K) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2015.54528 | ||
نویسندگان | ||
مسعود خوش سیما1؛ سیده سمانه ثابت قدم* 2؛ عباسعلی علی اکبری بیدختی3 | ||
1پژوهشکدۀ سامانههای ماهوارهای، پژوهشگاه فضایی ایران | ||
2گروه فیزیک فضا، مؤسسۀ ژئوفیزیک دانشگاه تهران | ||
3گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران | ||
چکیده | ||
در مقالۀ حاضر، تمرکز روزانۀ ذرات معلق با قطر کمتر از 10 میکرون (PM10)با استفاده از نمایههای نورشناخت حاصل از دادههایسنجش از دور و پراسنجهای هواشناختی تخمین زده شده است. برای این پژوهش از دادههای حاصل از سنجندۀ مادیس (ماهوارههای آکوا و ترا) و دادههای دستگاه نورسنج خورشیدی شامل عمق نوری هواویزها (AOD)، نمای آنگستروم (α) و ضریب تیرگی آنگستروم (β) و همچنین دادههای هواشناختی شامل فشار، دما، رطوبت، تندی و جهت باد و دادههای مربوط به تمرکز PM10 برای دورۀ مطالعاتی دسامبر 2009 تا سپتامبر 2010 منطقۀ زنجان که دارای اقلیمی خشک بهویژه در تابستان است، استفاده شده است. مقایسۀ نمایههای نورشناخت هواویز در دو فصل تابستان و زمستان نشان میدهد که اندازۀ متوسط ذرات و تیرگی جو در تابستان در مقایسه با زمستان بیشتر است. برای تخمین تمرکز PM10 با استفاده از نمایههای نورشناخت جو و پراسنجهای هواشناختی، از دو روش همبستگی سادۀ چندمتغیره و شبکۀ عصبی مصنوعی با توابع پایۀ شعاعی استفاده شده است.نتایج نشان میدهد ضریب همبستگی بین مقادیر مشاهداتی با مقادیر پیشبینیشده برای روش همبستگی سادۀ چندمتغیره و شبکۀ عصبی بهترتیب برابر 62/0و 82/0 است. ازاینرو استفاده از شبکۀ عصبی که قادر به پیشبینی روابط پیچیده بین پراسنجهای ورودی و خروجی است، در مقایسه با روش همبستگی سادۀ چندمتغیره، برای برآورد تمرکز PM10مناسبتر است. | ||
کلیدواژهها | ||
شبکۀ عصبی؛ ضرایب آنگستروم؛ عمق نوری؛ گردوغبار؛ هواویزهای جوی | ||
مراجع | ||
خوش سیما، م.، بیدختی، ع. ع.، احمدی گیوی، ف.، 1392. تعیین عمق نوری هواویزها با استفاده از دادههای دید افقی و سنجش از دور در دو منطقه شهری در ایران مجله فیزیک زمین و فضا، 39، 1، 163-17. Aleksander, I., and Morton, H., 1995. An introduction to neural computing, 2nd ed., Int.Thompson Comput. Press, New York.
Alfoldy, B., Osan , Z., Toth, S., Torok, A., Harbusch, C., and Jahn, D., 2007. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Science of the Total Environment 383, 141–163.
Al-Saadi, J., Szykman, J., Pierce, B., Kittaka, C., Neil, D., et al., 2005. Improving national air quality forecasts with satellite aerosol observations, Bull. Am. Meteorol. Soc., 86 (9), 1249 –1264.
Angstrom, A., 1961. Technique of determining the turbidity of the atmosphere.Tellus, 13, 214 –231.
Baumer, D., Vogel, B., Versick, S., Rinke, R., Mohler, O., and Schnaiter, M., 2008. Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany, Atmos. Environ., 42, 989–998.
Barladeanu, R., Stefan, S., and Radulescu, R., 2012. Correlation between the particulate matter (PM10) mass concentrations and aerosol optical depth in Bucharest, Romania, Romanian Reports in Physics, Vol. 64, 4, 1085–1096.
Birmili, W., Wiedensohler, A., and Eintzenberga, J., 2001. Atmospheric particle number size distribution incentralEurope'Statistical relations to air masses and meteorology. J. Geophysical Research, 106, 32, 5-32.
Broomhead, D., and Lowe, D., 1988. Multivariable functional interpolation and adaptive networks. Complex Syst., 2, 321–355.
Brunekreef, B. and Holgate, S., 2002. Air pollution and health, Lancet 360, 1233–1242.
Demir, G., 2010. An artificial neural network-based model for short-term predictions of daily mean pm10 concentrations, Journal of Environmental Protection and Ecology, 11, 1163-1171.
Filip, L., and Stefan, S., 2011. Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth (AOD), Journal of Atmospheric and Solar Terrestrial Physics., 73, 1883–1889.
Gardner, M. and Dorling, S., 1998. Artificial neural networks: A review of applications in the atmospheric sciences, Atmos. Environ., 32, 2627– 2636.
Giorgi, F. and Meleux, F., 2007. Modelling the regional effects of climate change on air quality, Comp. Rend. Geosci., 339, 721–733.
Gupta, P., and Christopher S., 2009a. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach, J. Geophys. Res., 114, D14205.
Gupta, P., and Christopher, S., 2009b. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach, J. Geophys. Res., 114, D20205.
Gupta, P., Christopher, S., Jun Wang, C., Gehrig, R., and Naresh Kumar, Y., 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ., 40, 5880–5892.
Haykin, S., 1999. Neural Networks, Macmillan College Publishing Company.
Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., and Brasseur, O., 2005. A neural network forecast for daily average PM 10 concentrations in Belgium. Atmospheric Environment, 39(18), 3279-3289.
Jol, A. and Kielland, G., 1997. Air Pollution in Europe 1997, European Environment Agency, Copenhagen, Denmark.
Kanniah, K., Zaman, N., Lim, H., and Reba, M., 2014. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements. In SPIE Remote Sensing. International Society for Optics and Photonics. 92420J.
Kaufman, Y. J., Tanre, D., Gordon, H., Nakajima, T., Lenoble, J., Frouin, R., Grass, H., Herman, B., King, M. and Teillet, P., 1997. Passive remote sensing of tropospheric aerosol and amospheric correction for the aerosol effect. J. Geophys. Res., 102 , 16 815–16 830.
Khoshsima, M., Ahmadi-Givi, F., Bidokhti, A.A., Sabetghadam, S., 2014. Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub urban area, Journal of Aerosol Science, 68, 46–57.
Kokhanovsky, A., 2008. Aerosol Optics, Light absorption and scattering by particles in the atmosphere.Springer, Berlin, Praxis publication limited, UK.149 pp.
Liu. Y, Franklin, Y., Kahn, R., and Koutrakis, P., 2007. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS, Remote Sensing of Environment, 107, 33–44.
Molnar, A., and Meszaros, E., 2001. On the relation between the size and chemical composition of aerosol particles and their optical properties. AtmosphericEnvironment, 35, 5053-5058.
Nicolaides, A., 2010. Pure mathematics: Determinants and matrices, Edition, 2, illustrated. Publisher, Pass Publications.
O’Neil, N., Royer, A., Cote, P., and McArthur, L., 1993. Relations between optically derived aerosols parameters, humidity, and air quality data in urban atmosphere, J. Appl. Meteorol., 32, 1484-1497.
Perez, P., Trier, A. and Reyes, J., 2000. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile, Atmos. Environ., 34, 1189– 1196.
Perez, P., and Reyes, J., 2006. An integrated neural network model for PM10 forecasting, Atmos. Environ., 40, 2845 – 2851.
Ping Guo, J., Zhang, X., Che, H., Gong, S., An, X., Cao, C., Guang, J., Zhang, H., Wang, Y., Zhang, X., Xue, M., and Li, X., 2009. Correlation between PM concentrations and aerosol optical depth in Eastern China. Atmospheric Environment, 43, 37-51.
Retalis, A., Hadjimitsis, D.G., Michaelides, S., Chrysoulakis, N., Clayton, C.R.I. and Themistocleous, K., 2010. Comparison of Aerosol Optical Thickness with In-Situ Visibility Data over Cyprus.Nat. Hazards Earth Syst. Sci. 10: 421–428.
Seinfeld, H. and Pandis, N., 1998. Atmospheric chemistry and physics, from air pollution to climate change. New York, John Wiley & Sons, pp. 1191.
Smirnov, A., Holben, B., Eck, T., Dubovik, O., and Slutsker, I., 2000. Cloud screening and quality control algorithms for Aeronet database, Rem. Sensing Environment, 73, 337-349.
Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., de Leeuw, G., 2008. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 9, 909–925.
Tian. J and Chen, D., 2010. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements, Remote Sensing of Environment, 114, 221-229.
Mahiyuddin, W., Sahani, M., Aripin, R., Latif, M., Thach, T., and Wong, C., 2013. Short-term effects of daily air pollution on mortality. Atmospheric Environment, 65, 69-79.
Wu.,Y., Guo, J., Zhang, X., and Li, X., 2011. Correlation between pm concentrations and aerosol optical depth in eastern china based on bp neural networks, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 3308 – 3311.
Yahi, H., B. Marticorena, S. Thiria, B. Chatenet, C. Schmechtig, J. L. Rajot, and M. Crepon , 2013.Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology, J. Geophys. Res. Atmos., 118, 265–281. | ||
آمار تعداد مشاهده مقاله: 3,066 تعداد دریافت فایل اصل مقاله: 1,615 |