تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,087,680 |
تعداد دریافت فایل اصل مقاله | 97,190,716 |
ضد عفونیکردن فاضلاب شهری توسط سامانههای دوغابی و سیمانی نانوذرات TiO2 | ||
نشریه بازیافت آب | ||
مقاله 7، دوره 2، شماره 1، اردیبهشت 1394، صفحه 59-69 اصل مقاله (621.85 K) | ||
نوع مقاله: مقاله علمی | ||
نویسنده | ||
اعظم یوسفی* | ||
تهران، دانشگاه علم و صنعت ایران، مرکز تحقیقات سیمان | ||
چکیده | ||
استفاده از فعالیت کاتالیزگری نوری نانوذرات تیتانیم دیاکساید در غیر فعالسازی میکروارگانیسمها، بیشتر بهصورت سوسپانسیون در مایعات یا بهطور محدود بهصورت تثبیتشده بر مواد بهکار گرفته شد. استفاده از فرایند اکسیداسیون پیشرفته، راهکاری جدید در تصفیة آب و فاضلاب درنظر گرفته میشود. در این مطالعه، از سامانههای دوغابی (g/L 1/0) و تثبیتشدة نانوذرات تیتانیم دیاکساید در بستر سیمان (1/0-2 درصد)، تحت تابش فرابنفش 160 واتی برای بررسی ویژگی ضد باکتریایی آنها استفاده شد. خواص ضد میکروبی کاتالیزگری نوری نانوذرات تیتانیم دیاکساید، با شمارش کلنیهای باکتریهای زنده انجام گرفت. نتایج آزمایشها نشان داد نانوذرات در تاریکی اثر میکروبکشی نداشت، ولی برعکس در حضور پرتوهای فرابنفش خاصیت باکتریکشی قوی (99%>) دارند. نتایج سامانة تثبیت نانوذرات نشان دادند خاصیت ضد میکروبی آنها مؤثر (80%>) است و بهترین درصد افزودن نانوذرات به سیمان یک درصد است، اما باکتریهای غیر فعالشده در مجاورت سیمان، پس از طی دورة تاریکی، رشد مجدد بسیار بالایی پیدا میکنند؛ بنابراین، در این شرایط، تابش نور باید بهطور پیوسته وجود داشته باشد تا ویژگی کاتالیزگری نوری نانوذرات تیتانیم دیاکساید، میکروارگانیسمهای فاضلاب را بکشد و آب سالم تهیه شود. | ||
کلیدواژهها | ||
باکتری ایکلای؛ سیمان؛ فاضلاب؛ فعالیت ضد میکروبی؛ کاتالیزگری نوری؛ نانوذرات تیتانیم دیاکساید | ||
مراجع | ||
[1] Marugán, J., Grieken, R., Pablos, C., Sordo, C. (2010). “Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms”, Water Research, 44, 789-796. [2] Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C. (2009) “Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2”, Applied Catalysis B: Environmental, 93, 112-118. [3] Foster, H., Ditta, I., Varghese, S., Steele, A. (2011). “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Applied Microbiology Biotechnology, 90, 1847-1868. [4] Gavriliu, S., Lungu, M., Gavriliu, L., Grigore, F., Groza, C. (2009). “Antimicrobial colloidal suspensions of silver-titania”, The Open Chemical and Biomedical Methods Journal, 1, 77-85. [5] Jiang, W., Mashayekhi, H., Xing, B. (2009). “Bacterial toxicity comparison between nano- and micro-scaled oxide particles”, Environmental Pollution, 157, 1619-1625. [6] Marugán, J., van Grieken, R., Sordo, C., Cruz, C. (2008). “Kinetics of the photocatalytic disinfection of Escherichia coli suspensions”, Applied Catalysis B: Environmental, 82, 27-36. [7] Rincón, A. G., Pulgarin, C. (2004). “Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time”, Applied Catalysis B: Environmental, 49, 99-112. [8] Liu, H. L., Yang, T. C. K. (2003). “Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light”, Process Biochemistry, 39, 475-481. [9] Liu, P., Duan, W., Wang, Q., Li, X. (2010). “The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light”, Colloids and Surfaces B: Biointerfaces, 78, 171-176. [10] Lackhoff M., Prieto, X., Nestle, N., Dehn, F., Niessner, R. (2003). “Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement ageing”, Applied Catalysis B: Environmental, 43, 205-216. [11] MacFarlane, J. W., Jenkinson, H. F., Scott, T. B. (2011). “Sterilization of microorganisms on jet spray formed titanium dioxide surfaces”, Applied Catalysis B: Environmental, 106, 181-185. [12] Machida M., Norimoto K., Kimura, T. (2005). “Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware”, Journal of the American Ceramic Society, 88, 95-100. [13] Afzal, Ghauri, M., Okibe, N., Barrie, Johnson D. (2007). “Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations”, Hydrometallurgy, 85, 72-80. [14] Lin, D. Q., Brixius, P. J., Hubbuch, J. J., Thömmes, J., Kula, M. R. (2003). “Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study”, Biotechnology and Bioengineering, 83, 149-157. [15] Giannantonio, D., Kurth, J., Kurtis, K., Sobecky, P. (2009). “Effects of concrete properties and nutrients on fungal colonization and fouling”, International Biodeterioration and Biodegradation, 63, 252-259. [16] Chen, J., Poon, C. S. (2009). “Photocatalytic construction and building materials: From fundamentals to applications”, Building and Environment, 44, 1899-1906. [17] Guillard, C., Puzenat, E., Lachheb, H., Houas, A., Herrmann, J. M. (2005). “Why inorganic salts decrease the TiO2 photocatalytic efficiency”, International Journal of Photoenergy, 7, 1-9. [18] یوسفی، ا.، الهوردی، ع.، حجازی، پ. (1392). "کاربرد فناوری نوین کاتالیزگری نوری نانوذرات تیتانیم دیاکساید در کنترل آلودگی میکروبی محیط زیست"، دومین همایش ملی فناوری نوین در کنترل آلودگیهای محیط زیست، تهران. [19] Yousefi, A., Allahverdi, A., Hejazi, P. (2013). “Effective Dispersion of Nano-TiO2 Powder for Enhancement of Photocatalytic Properties in Cement Mixes”, Construction and building materials, 41, 224–230. [20] Yousefi, A., Allahverdi, A., Hejazi, P. (2014). “Accelerated Biodegradation of Cured Cement Paste by Thiobacillus Species under Simulation Condition”, International Biodeterioration and Biodegradation, 86, 317-326. [21] Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., Zhao, X. S. (2010). “Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase”, Journal of Colloid and Interface Science, 348, 342-347. [22] Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C. (2007). “Photocatalytic inactivation of Escherischia coli Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation”, Applied Catalysis B: Environmental, 76, 257–263. | ||
آمار تعداد مشاهده مقاله: 2,085 تعداد دریافت فایل اصل مقاله: 868 |