تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,683,123 |
تعداد دریافت فایل اصل مقاله | 98,912,700 |
Bedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming | ||
Pollution | ||
مقاله 8، دوره 1، شماره 1، فروردین 2015، صفحه 85-94 اصل مقاله (639.61 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.7508/pj.2015.01.008 | ||
نویسندگان | ||
Zahra Zangeneh Sirdari* 1؛ Aminuddin Ab. Ghani1؛ Nasim Zangeneh Sirdari2 | ||
1REDAC, University of Sains Malaysia, Engineering Campus, 14300, NibongTebal, Penang, Malaysia | ||
2Garmsar Branch, Islamic Azad University, Semnan, Iran | ||
چکیده | ||
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estimate the bedload carried in Kurau River, based on bedload transport measurement data and hydraulic variables. A statistical analysis was carried out to validate methods by computing RMSE, MARE and inequality ratio (U). In general, the ability of the artificial neural network combined with genetic programming with R2 equal to 0.95, RMSE equal to 0.1 as a precipitation predictive tool for predicting the bedload transport rate was observed as being acceptable. | ||
کلیدواژهها | ||
Artificial Neural Network؛ Bedload transport؛ Genetic programming؛ Kurau River | ||
آمار تعداد مشاهده مقاله: 3,046 تعداد دریافت فایل اصل مقاله: 2,159 |