
تعداد نشریات | 163 |
تعداد شمارهها | 6,826 |
تعداد مقالات | 73,630 |
تعداد مشاهده مقاله | 135,032,739 |
تعداد دریافت فایل اصل مقاله | 105,338,009 |
Lycopene Ameliorates Chlorpyrifos-induced Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms in Rats | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 6، دوره 19، شماره 4، دی 2025، صفحه 665-676 اصل مقاله (1.75 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.4.1005731 | ||
نویسندگان | ||
Parag Ranjita Bera؛ Sudipta Jana؛ Prabir Mondal؛ Chhanda Mallick Mukherjee* | ||
Department of Bio-Medical Laboratory Science and Management, Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, India. | ||
چکیده | ||
Background: Chlorpyrifos (CPF) is a common organophosphate insecticide with toxic effects on the brain, nervous system, and other organs. Objectives: This study was designed to determine the neuroprotective efficacy of lycopene, a potential carotenoid, on CPF-induced neuronal damage in male rats. Methods: Eighteen male Wistar rats were randomly divided into three study groups (n=6): control group received only vehicle, CPF-treated group received CPF (6 mg/kg/d), and CPF + lycopene-treated group received CPF followed by lycopene (10 mg/kg/d). After 28 days of treatment, the animals were sacrificed to assess anti-oxidative and anti-inflammatory markers. Results: CPF intoxication significantly inhibited the acetylcholinesterase (AChE) in brain cells. As a result, excess choline accumulates in neurons, impairing neurochemical homeostasis and cognitive function. Glutathione S-transferase, catalase, peroxidase, and superoxide dismutase activities and reduced glutathione content were significantly decreased in the CPF-treated group due to excess accumulation of reactive oxygen species (ROS) in brain cells. This result is also reflected by the elevated malondialdehyde (MDA) levels and conjugated diene. Thus, cellular damage in the brain ensues. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), the proinflammatory mediators, increased in brain tissue in the CPF-treated group. After cerebrum and cerebellum histological analysis, partial neuronal necrosis and damage in Purkinje and granular cells were observed. All the above-mentioned parameters of brain tissue were significantly recovered towards the control level in the lycopene-treated group. Conclusion: We may conclude that lycopene protects rat brain tissue against CPF-induced neurotoxicity by acting as an antioxidant, anti-inflammatory, and anticholinergic agent. | ||
کلیدواژهها | ||
Antioxidant activity؛ Catalase؛ Acetylcholinesterase (AChE)؛ Tumour necrosis factor-α؛ Interleukin-6 | ||
اصل مقاله | ||
Introduction
Materials and Methods
Discussion
Abdel Moneim A. E. (2016). Indigofera oblongifolia Prevents Lead Acetate-Induced Hepatotoxicity, Oxidative Stress, Fibrosis and Apoptosis in Rats. Plos One, 11(7), e0158965.[DOI:10.1371/journal.pone.0158965] [PMID] Akpa, A. R., Ayo, J. O., Mika'il, H. G., & Zakari, F. O. (2020). Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicological Research, 37(2), 163–171. [DOI:10.1007/s43188-020-00049-y][PMID] Albasher, G., Alsaleh, A. S., Alkubaisi, N., Alfarraj, S., Alkahtani, S., Farhood, M., Alotibi, N., & Almeer, R. (2020). Red Beetroot Extract Abrogates Chlorpyrifos-Induced Cortical Damage in Rats. Oxidative Medicine and Cellular Longevity, 2020, 2963020. [DOI:10.1155/2020/2963020][PMID] Almeer, R. S., & Abdel Moneim, A. E. (2018). Evaluation of the Protective Effect of Olive Leaf Extract on Cisplatin-Induced Testicular Damage in Ra Oxidative Medicine and Cellular Longevity, 2018, 8487248. [DOI:10.1155/2018/8487248][PMID] Badr A. M. (2020). Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environmental Science and Pollution Research International, 27(21), 26036–26057. [DOI:10.1007/s11356-020-08937-4] [PMID] Basaure, P., Guardia-Escote, L., Cabré, M., Peris-Sampedro, F., Sánchez-Santed, F., Domingo, J. L., & Colomina, M. T. (2019). Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Archives of Toxicology, 93(3), 693–707. [DOI:10.1007/s00204-019-02387-9] [PMID] Brown A. M. (2005). A new software for carrying out one-way ANOVA post hoc tests. Computer Methods and Programs in Biomedicine, 79(1), 89–95. [DOI:10.1016/j.cmpb.2005.02.007] [PMID] Cardona, D., López-Granero, C., Cañadas, F., Llorens, J., Flores, P., Pancetti, F., et al. (2013). Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration. The Journal of Toxicological Sciences, 38(2), 193–203. [DOI:10.2131/jts.38.193] [PMID] Castro, D., Contreras, L. M., Kurz,, & Wilkesman, J. (2017). Detection of guaiacol peroxidase on electrophoretic gels. Methods in Molecular Biology, 1626, 199–204. [DOI:10.1007/978-1-4939-7111-4_18][PMID] Chance, B. and Maehly, A.C. (1955) Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. [DOI:10.1016/S0076-6879(55)02300-8] Drafta, S., Guita, D. M., Cristache, C. M., Beuran, I. A., Burlibasa, M., & Petre, A. E., et al. (2021). Could proinflammatory cytokines levels IL-6, IL-8, TNFα, total antioxidant status and lactate dehydrogenase be associated with peri-implant bone loss? A pilot study. Applied Sciences, 11(22), 11012. [DOI:10.3390/app112211012] Duramad, P., Tager, I. B., & Holland, N. T. (2007). Cytokines and other immunological biomarkers in children's environmental health studies. Toxicology Letters, 172(1-2), 48–59.[DOI:10.1016/j.toxlet.2007.05.017][PMID] Ellman G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. [DOI:10.1016/0003-9861(59)90090-6] [PMID] Ellman, G. L., Courtney, K. D., Andres, V., Jr, & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. [DOI:10.1016/0006-2952(61)90145-9] [PMID] Elmorsy, E., Al-Ghafari, A., Al Doghaither, H., Salama, M., & Carter, W. G. (2022). An investigation of the neurotoxic effects of malathion, chlorpyrifos, and paraquat to different brain regions. Brain Sciences, 12(8), 975. [DOI:10.3390/brainsci12080975][PMID] Fu, H., Tan, P., Wang, R., Li, S., Liu, H., Yang, Y., et al. (2022). Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. Journal of Hazardous Materials, 424(Pt B), 127494. [DOI:10.1016/j.jhazmat.2021.127494] [PMID] Greenfield S. A. (1991). A noncholinergic action of acetylcholinesterase (AChE) in the brain: From neuronal secretion to the generation of movement. Cellular and Molecular Neurobiology, 11(1), 55–77. [DOI:10.1007/BF00712800][PMID] Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249(22), 7130–7139. [PMID] Hernández, F., Gil, F., Lacasaña, M., Rodríguez-Barranco, M., Tsatsakis, A. M., Requena, M., et al. (2013). Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food and Chemical Toxicology, 61, 144–151. [DOI:10.1016/j.fct.2013.05.012] [PMID] Heymann, T., Heinz, P., & Glomb, M. A. (2015). Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals. Journal of Agricultural and Food Chemistry, 63(12), 3279– [DOI:10.1021/acs.jafc.5b00377] [PMID] Ikemoto, M., Tsunekawa, S., Awane, M., Fukuda, Y., Murayama, H., Igarashi, M., et al. (2001). A useful ELISA system for human liver-type arginase, and its utility in diagnosis of liver diseases. Clinical Biochemistry, 34(6), 455–461. [DOI:10.1016/S0009-9120(01)00254-5] [PMID] Islam, M. N., Rauf, A., Fahad, F. I., Emran, T. B., Mitra, S., Olatunde, A., et al. (2022). Superoxide dismutase: An updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition, 62(26), 7282–7300. [DOI:10.1080/10408398.2021.1913400][PMID] Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21(2), 130–132. [PMID] Kaur, R., Mavi, G. K., Raghav, S., & Khan, I. (2019). Pesticides classification and its impact on environment. International Journal of Current Microbiology and Applied Sciences, 8(3), 1889-1897. [DOI:10.20546/ijcmas.2019.803.224] Kelkel, M., Schumacher, M., Dicato, M., & Diederich, M. (2011). Antioxidant and anti-proliferative properties of lycopene. Free Radical Research, 45(8), 925–940. [DOI:10.3109/10715762.2011.564168] [PMID] Kerksick, C., & Willoughby, D. (2005). The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. Journal of the International Society of Sports Nutrition, 2(2), 38–44. [DOI:10.1186/1550-2783-2-2-38][PMID] Kong, K. W., Khoo, H. E., Prasad, K. N., Ismail, , Tan, C. P., & Rajab, N. F. (2010). Revealing the power of the natural red pigment lycopene. Molecules, 15(2), 959–987. [DOI:10.3390/molecules15020959][PMID] Kuelz, A. K., Hohagen, F., & Voderholzer, U. (2004). Neuropsychological performance in obsessive-compulsive disorder: A critical review. Biological Psychology, 65(3), 185–236. [DOI:10.1016/j.biopsycho.2003.07.007] [PMID] Lawal, A. O., Folorunso, I. M., & Iwaloye, O. (2022). Morin hydrate protects type-2-diabetic wistar rats exposed to diesel exhaust particles from inflammation and oxidative stress. Journal of Diabetes and Metabolic Disorders, 21(1), 805–816. [DOI:10.1007/s40200-022-01057-5][PMID] Lee, J. E., Lim, M. S., Park, J. H., Park, C. H., & Koh, H. C. (2014). Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. Neurotoxicology, 42, 58–70. [DOI:10.1016/j.neuro.2014.04.001] [PMID] Maroni, M., Colosio, C., Ferioli, A., & Fait, A. (2000). Biological Monitoring of Pesticide Exposure: A review. Introduction. Toxicology, 143(1), 1–118. [DOI:10.1016/S0300-483X(99)00152-3] [PMID] Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190, [DOI:10.1016/j.neuropharm.2020.108352] [PMID] Mazuryk, J., Klepacka, K., Kutner, W., & Sharma, P. S. (2024). Glyphosate: Hepatotoxicity, nephrotoxicity, hemotoxicity, carcinogenicity, and clinical cases of endocrine, reproductive, cardiovascular, and pulmonary system intoxication. ACS Pharmacology & Translational Science, 7(5), 1205–1236. [DOI:10.1021/acsptsci.4c00046][PMID] Mesallam, D., Omar, A., Abass, M., & Gawish, M. (2016). Possible protective role of propolis and nigella sativa oil against the toxic effects of chlorpyrifos on the liver and testes of adult albino rats. Ain Shams Journal of Forensic Medicine and Clinical Toxicology, 26(1), 16-34. [DOI:10.21608/ajfm.2016.18533] Miller, L. M., Dumas, P., Jamin, N., Teillaud, J. L., Miklossy, J., & Forro, L. (2002). Combining IR spectroscopy with fluorescence imaging in a single microscope: Biomedical applications using a synchrotron infrared source. Review of Scientific Instruments, 73(3), 1357-1360. [DOI:10.1063/1.1435824] National Institutes of Health (US). Health implications of obesity. National Institutes of Health Consensus Development Conference Statement. (1985). Annals of Internal Medicine, 103(1), 147–151. [PMID] Ncibi, S., Ben Othman, M., Akacha, A., Krifi, M. N., & Zourgui, L. (2008). Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver. Food and Chemical Toxicology, 46(2), 797–802. [DOI:10.1016/j.fct.2007.08.047] [PMID] Ogut, S., Gultekin, F., Kisioglu, A. N., & Kucukoner, E. (2011). Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicology and Industrial Health, 27(9), 820–825. [DOI:10.1177/0748233711399311] [PMID] Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., & Grewal, A. S., et al. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. [DOI:10.1016/j.jclepro.2020.124657] Saad, A. B., Rjeibi, I., Alimi, H., Ncib, S., Smida, A., Zouari, N., & Zourgui, L. (2017). Lithium induced, oxidative stress and related damages in testes and heart in male rats: The protective effects of Malva sylvestris extract. Biomedicine & Pharmacotherapy, 86, 127–135. [DOI:10.1016/j.biopha.2016.12.004] [PMID] Saulsbury, M. D., Heyliger, S. O., Wang, K., & Johnson, D. J. (2009). Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology, 259(1-2), 1-9. [DOI:10.1016/j.tox.2008.12.026] [PMID] Shou, Y., Shao, J., Lai, K. H., Kang, M., & Park, Y. (2019). The impact of sustainability and operations orientations on sustainable supply management and the triple bottom line. Journal of Cleaner Production, 240, 118280. [DOI:10.1016/j.jclepro.2019.118280] Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S. & Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology, 49(13), 1135-1187. [DOI:10.1080/10643389.2019.1565554] Sinha A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. [DOI:10.1016/0003-2697(72)90132-7] [PMID] Ubaid Ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M. A., Ahmed, A., & Khalid, N. (2021). A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. The Science of the Total Environment, 755(Pt 2), 142649.[DOI:10.1016/j.scitotenv.2020.142649] [PMID] Vicidomini, C., Palumbo, R., Moccia, M., & Roviello, G. N. (2024). Oxidative processes and xenobiotic metabolism in plants: mechanisms of defense and potential therapeutic implications. Journal of Xenobiotics, 14(4), 1541-1569. [DOI:10.3390/jox14040084][PMID] Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A. R., & Ma, L. Q., et a (2015). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13-17. [DOI:10.1016/j.biortech.2015.01.044] [PMID] Weydert, C. J., & Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols, 5(1), 51-66. [DOI:10.1038/nprot.2009.197][PMID] Wittekind, D. (2003). Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. Value and limitations of the hematoxylin-eosin stain. Biotechnic & Histochemistry, 78(5), 261-270. [DOI:10.1080/10520290310001633725] [PMID] Xing, H., Wang, J., Li, J., Fan, Z., Wang, M., & Xu, , (2010). Effects of atrazine and chlorpyrifos on acetylcholinesterase and carboxylesterase in brain and muscle of common carp. Environmental Toxicology and Pharmacology, 30(1), 26-30. [DOI:10.12944/CWE.8.1.17] Yang, C. C., & Deng, J. F. (2007). Intermediate syndrome following organophosphate insecticide poisoning. Journal of the Chinese Medical Association, 70(11), 467–472. [DOI:10.1016/S1726-4901(08)70043-1] [PMID] | ||
آمار تعداد مشاهده مقاله: 137 تعداد دریافت فایل اصل مقاله: 51 |