
تعداد نشریات | 163 |
تعداد شمارهها | 6,766 |
تعداد مقالات | 72,871 |
تعداد مشاهده مقاله | 132,034,735 |
تعداد دریافت فایل اصل مقاله | 103,597,040 |
نقش فیلترهای حاوی نانوذرات نقره در کنترل عفونت قارچی دوره تکامل جنینی تاسماهی ایرانی (Acipenser persicus): نرخ زندهمانی و میزان تجمع نقره در لاروها | ||
شیلات | ||
دوره 78، شماره 2، تیر 1404، صفحه 91-106 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2024.383541.1443 | ||
نویسندگان | ||
اشکان بنان* 1؛ محمدرضا کلباسی2؛ محمود بهمنی3؛ محمد علی یزدانی ساداتی4 | ||
1گروه علوم و مهندسی شیلات و محیط زیست، دانشکده منابع طبیعی، دانشگاه لرستان، خرمآباد، ایران. | ||
2گروه تکثیر و پرورش آبزیان، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران. | ||
3موسسة تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران. | ||
4انستیتو تحقیقات بینالمللی ماهیان خاویاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران. | ||
چکیده | ||
در این پژوهش، تثبیت نانوذرات نقره (Silver Nanoparticles [AgNPs]) روی دانه های زئولیت و سیلیس بهعنوان بستر فیلتراسیون در کنترل عفونت قارچی دوران انکوباسیون جنین تاسماهی ایرانی صورت گرفت و میزان تجمع نقره در لاروهای تولیدی، اثر آن بر بازماندگی و وزن لاروها تا مرحلة جذب کیسة زرده مورد بررسی قرار گرفت. در هر انکوباتور مورد استفاده که توسط یک فیلتر تغذیه میشد، تعداد 750 تخم در سه تکرار 250 تایی قرار داده شد. فیلترهای محتوی 0/2، 5/0 و 1 درصد نانوذرات نقره در دو حالت بدون عامل و دارای عامل جفتشوندة آمینوپروپیل تریاتوکسی سیلان بههمراه شاهد (بدون فیلتر)، تیمارهای مورد بررسی در پژوهش حاضر بودند. سنجش غلظت نقره در لاروهای حاصل از تیمار فیلترهای 0/5 و 1 درصد وزنی نانوذرات نقره در پایان دورة مطالعه نشان داد که میزان تجمع نقره در فیلتر 1 درصد بدون عامل بهطور معنیداری بالاتر از فیلترهای 0/5 درصد است. هرچند میزان نقره سنجش شده کم بود و منجر به ایجاد عوارض خارجی قابل مشاهده در لاروها نگردید. همچنین، در تیمار فیلترهای 1 درصد عاملدار، درصد بازماندگی لاروها تا مرحلة جذب کیسة زرده، بهطور معنی داری نسبت به تیمار فیلتر شاهد، افزایش نشان دادند. | ||
کلیدواژهها | ||
تجمع زیستی؛ تخم لقاحیافته؛ ساپرولگنیا؛ فیلتر آب؛ قرهبرون؛ نانوذره نقره | ||
مراجع | ||
Alinezhad, S., Abdollahpour, H., Jafari, N., Falahatkar, B., 2020. Effects of thyroxine immersion on Sterlet sturgeon (Acipenser ruthenus) embryos and larvae: Variations in thyroid hormone levels during development. Aquaculture 519, 734745. DOI: 10.1016/j.aquaculture.2019.734745 Aramli, M.S., Nazari, R.M., 2014. Motility and fertility of cryopreserved semen in Persian sturgeon, Acipenser persicus, stored for 30–60 min after thawing. Cryobiology 69(3), 500-502. DOI: 10.1016/j.cryobiol.2014.10.006 Amini, K., Siraj, S.S., Mojazi Amiri, B., Mirhashemi Rostami, S.A., Sharr, A., Hossienzadeh, H., 2012. Evaluation of LHRH-a acute release implantation on final maturation and spawning in not-fully matured broodstocks of Persian sturgeon (Acipenser persicus Borodin, 1897). Iranian Journal of Fisheries Sciences 11(3), 440-459. DORL: 20.1001.1.15622916.2012.11.3.1.1 Anokhina, E.P., Tolkacheva, A.A., Pryakhina, N.A., Syromyatnikov, M.Y., Korneeva, O.S., 2023. Isolation and identification of Saprolegnia spp. from infected sturgeon caviar. Acta Biologica Sibirica 9, 13-21. DOI: 10.5281/zenodo.7679902 Ashaf-Ud-Doulah, M., Islam, S.M., Zahangir, M.M., Islam, M.S., Brown, C., Shahjahan, M., 2021. Increased water temperature interrupts embryonic and larval development of Indian major carp rohu Labeo rohita. Aquaculture International 29, 711-722. DOI: 10.1007/s10499-021-00649-x Bae E, Lee BC, Kim Y, Choi K, Yi J., 2013. Effect of agglomeration of silver nanoparticle on nanotoxicity depression. Korean Journal of Chemical Engineering 30(2), 364-368. DOI: 10.1007/s11814-012-0155-4 Banan, A., Kalbassi, M.R., Bahmani, M. and Sadati, M.Y., 2011. Effects of colored light and tank color on growth indices and some physiological parameters of juvenile beluga (Huso huso). Journal of Applied Ichthyology 27(2), 565-570. DOI: 10.1111/j.1439-0426.2011.01682.x Banan, A., Kalbassi Masjed Shahi, M.R., Bahmani, M., Yazdani Sadati, M.A., 2016. Toxicity assessment of silver nanoparticles in Persian sturgeon (Acipenser persicus) and starry sturgeon (Acipenser stellatus) during early life stages. Environmental Science and Pollution Research 23, 10139-10144. DOI: 10.1007/s11356-016-6239-7 Bruno, D.W., Wood, B.P., 1999. Saprolegnia and other Oomycetes. In: Woo, P. T. K., Bruno, D.W. (editors), Fish Diseases and Disorders. Viral, Bacterial and Fungal Infections, Vol. 3. CABI Publishing, Wallingford, Oxon, United Kingdom, 930 p. Cho, K.H., Park, J.E., Osaka, T., Park, S.G., 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochemica Acta 51(5), 956-960. DOI: 10.1016/j.electacta.2005.04.071 Ciulli, S., Volpe, E., Sirri, R., Tura, G., Errani, F., Zamperin, G., Toffan, A., Silvi, M., Renzi, A., Abbadi, M. and Biasini, L., 2020. Multifactorial causes of chronic mortality in juvenile sturgeon (Huso huso). Animals 10(10), 1866. DOI: 10.3390/ani10101866 Drake, P.L., Hazelwood, K.J., 2005. Exposure-related health effects of silver and silver compounds: a review. The Annals of Occupational Hygiene 49, 575-585. DOI: 10.1093/annhyg/mei019 Food and Agriculture Organization (FAO), 2024. FAO Yearbook of Fishery and Aquaculture Statistics 2021 (Rome: FAO Fisheries and Aquaculture Department). Forneris, G., Bellardi, S., Palmegiano, G.B., Saroglia, M., Sicuro, B., Gasco, L., Zoccarato, I., 2003. The use of ozone in trout hatchery to reduce saprolegniasis incidence. Aquaculture 221, 157-166. DOI: 10.1016/S0044-8486(02)00518-5 Frei, A., Verderosa, A.D., Elliott, A.G., Zuegg, J., Blaskovich, M.A., 2023. Metals to combat antimicrobial resistance. Nature Reviews Chemistry 7(3), 202-224. DOI: 10.1038/s41570-023-00463-4 Ghiasi, M., Khosravi, A.R., Soltani, M., Binaii, M., Shokri, H., Tootian, Z., Rostamibashman, M., Ebrahimzademousavi, H., 2010. Characterization of Saprolegnia isolates from Persian sturgeon (Acipencer persicus) eggs based on physiological and molecular data. Journal de Mycologie Médicale 20(1), 1-7. DOI: 10.1016/j.mycmed.2009.11.005 Hosseini, S.Z., 2012. Effect of filter containing different levels of silver nanoparticles on reduction of egg fungal infections in semirecirculator incubation system of caspian trout (Salmo trutta caspius). Master of Science Thesis. Tarbiat Modares University. IRAN. (In Persian) Jarić, I. Višnjić-Jeftić, Ž. Cvijanović, G. Gačić, Z. Jovanović, L. Skorić, S., Lenhardt, M. 2011. Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchemical Journal 98, 77-81. DOI: 10.1016/j.microc.2010.11.008 Johari, S.A., 2012. Application of silver nanoparticles for reduction of fungal infections during egg incubation period and possible effects of their release on the alterations of some genomic and physiological parameters in rainbow trout (Oncorhynchus mykiss). PhD Dissertation. Tarbiat Modares University. IRAN. (In Persian) Johari, S.A., Kalbassi, M.R., Soltani, M., Yu, I.J., 2016. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquaculture International 24, 23-38. DOI: 10.1007/s10499-015-9906-7 Kawahara, K., Tsuruda, K., Morishita, M., Uchida, M., 2000. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials 16(6), 452-455. DOI: 10.1016/S0109-5641(00)00050-6 Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2), 235–242. DOI: 10.1007/s10534-008-9159-2 Kowalska, G., Pankiewicz, U. and Kowalski, R., 2020. Determination of the level of selected elements in canned meat and fish and risk assessment for consumer health. Journal of Analytical Methods in Chemistry 2020(1), 2148794. DOI: 10.1155/2020/2148794 Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J., Xu, X., 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of Zebrafish embryos. ACS Nano 1(2), 133-143. DOI: 10.1021/nn700048y Li, H., You, Q., Feng, X., Zheng, C., Zeng, X., Xu, H., 2023. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions. Journal of Drug Delivery Science and Technology 80, 104165. DOI: 10.1016/j.jddst.2023.104165 Lv, Y., Liu, H., Wang Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R.I., 2009. Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science 331(1-2), 50-60. DOI: 10.1016/j.memsci.2009.01.007 Mohan, Y.M., Lee, K., Premkumar, T., Geckeler, K.E., 2007. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1), 158-164. DOI: 10.1016/j.polymer.2006.10.045 Murr, L.E., 2009. Nanoparticulate materials in antiquity: The good, the bad and the ugly. Materials Characterization 60(4), 261-270. DOI: 10.1016/j.matchar.2008.03.012 Pereira, C., Silva, J.F., Pereira, A.M., Araújo, J. P., Blanco, G., Pintado, J. M., Freire, C., 2011. Hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol. Catalysis Science and Technology 1(5), 784-793. DOI: 10.1039/C1CY00090J Phong, N.T.P., Thanh, N.V.K., Phuong, P.H., 2009. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams. Journal of Physics: Conference Series 187, 012079. DOI: 10.1088/1742-6596/187/1/012079 Pottinger, T.A., Day, J.G., 1999. A Saprolegnia parasitica challenge system for rainbow trout: assessment of Pyceze as an anti-fungal agent for both fish and ova. Diseases of Aquatic Organisms 36(2), 129-41. DOI: 10.3354/dao036129 Qu, K., Xu, H., Zhao, C., Ren, J., Qu, X., 2011. Amine-linker length dependent electron transfer between porphyrins and covalent amino-modified single-walled carbon nanotubes. RSC advances 1(4), 632-639. DOI: 10.1039/C1RA00010A Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.K., Chai, Y.G., Kim, S.H., Kim, H.T., 2011. Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 389(1), 118-126. DOI: 10.1016/j.colsurfa.2011.08.042 Rach, J.J., Gaikowski, M.P., Howe, G.E., Schreier, T.M., 1998. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm- and cool water fishes. Aquaculture 165, 11-25. DOI: 10.1016/S0044-8486(98)00248-8 Radosavljevic, V., Milicevic, V., Maksimović-Zorić, J., Veljović, L., Nesic, K., Pavlović M,Ljubojević-Pelić, D., Marković, Z., 2019. Sturgeon diseases in aquaculture. Archivos deMedicina Veterinaria 12(1), 5–20. DOI: 10.46784/e-avm.v12i1.34 Sanpui, P., Murugadoss, A., Prasad, P.V.D., Ghosh, S.S., Chattopadhyay, A., 2008. The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. International Journal of Food Microbiology 124(2), 142-146. DOI:10.1016/j.ijfoodmicro.2008.03.004 Sarkheil, M., Sourinejad, I., Mirbakhsh, M., Kordestani, D., Johari, S.A., 2016. Application of silver nanoparticles immobilized on TEPA-Den-SiO2 as water filter media for bacterial disinfection in culture of Penaeid shrimp larvae. Aquacultural Engineering 74, 17-29. DOI: 10.1016/j.aquaeng.2016.05.003 Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S., 2007. Synthesis and effect of silver Nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine 3(2), 168-171. DOI: 10.1016/j.nano.2007.02.001 Singh, M., Singh, S., Prasad, S., Gambhir, I.S., 2008. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures 3(3), 115-122. Smith, C.J., Shaw, B.J., Handy, R.D., 2007. Toxicity of single walled carbon nanotubes on rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology 82(2), 94–109. DOI: 10.1016/j.aquatox.2007.02.003 Soloviev, M., Gedanken, A., 2011. Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrasonics Sonochemistry 18(1), 356-362. DOI: 10.1016/j.ultsonch.2010.06.015 Torres-Flores, E.I., Flores-López, N.S., Martínez-Núñez, C.E., Tánori-Córdova, J.C., Flores-Acosta, M., Cortez-Valadez, M., 2021. Silver nanoparticles in natural zeolites incorporated into commercial coating: antibacterial study. Applied Physics A 127, 1-11. DOI: 10.1007/s00339-020-04227-5 Wang, S., Hou, W., Wei, L., Jia, H., Liu, X., Xu, B., 2007. Antibacterial activity of nano SiO2 antibacterial agent grafted on wool surface. Surface and Coating Technology 202(3), 460-465. DOI: 10.1016/j.surfcoat.2007.06.012 Wu, Y., and Zhou, Q., 2012. Dose-and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): Underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology 124, 238-246. DOI: 10.1016/j.aquatox.2012.08.009 Zarrinmehr, M.J., 2014. Application of Filters Containing Silver Nanoparticle in the Reduction of Aeromonas hydrophila Septicemia and Assesment of their Potential Releasing of Nanoparticles on the Survival and Physiological Changes of Zebrafish (Danio rerio). Master of Science Thesis. Tarbiat Modares University. IRAN. (In Persian) | ||
آمار تعداد مشاهده مقاله: 23 |