
تعداد نشریات | 163 |
تعداد شمارهها | 6,763 |
تعداد مقالات | 72,846 |
تعداد مشاهده مقاله | 131,938,293 |
تعداد دریافت فایل اصل مقاله | 103,556,877 |
شبیهسازی ذخایر کربن و نیتروژن آلی خاک در مدیریتهای مختلف منطقه سارال غرب ایران با استفاده از مدل CENTURY | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 4، تیر 1404، صفحه 1059-1083 اصل مقاله (2.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.356044.669461 | ||
نویسندگان | ||
پوریا شهسواری1؛ محمد امیر دلاور* 1؛ پرویز کرمی2؛ کمال نبی اللهی3 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران | ||
2گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
3گروه مهندسی علوم خاک دانشکده کشاورزی، دانشگاه کردستان، سنندج ایران | ||
چکیده | ||
امروزه تغییر کاربری مراتع و چمنزارها و تبدیل آنها به زمینهای زراعی موجب تضعیف خصوصیات خاک و هدررفت کربن و نیتروژن خاک میشود. هدف این پژوهش واسنجی و اعتبارسنجی مدل سنچری بهمنظور تجزیهوتحلیل منابع کربن و نیتروژن آلی خاک از سال 1900 (پوشش گیاهی بومی قبل از تغییر کاربری و مدیریت) تا سال 2020 (وضعیت کنونی) و تعریف سناریوهای مدیریتی تا سال 2100 برای چمنزارها، مراتع و مزارع منطقه سارال استان کردستان است. نتایج نشان داد ورودی کربن آلی به خاک طی سالهای 1963 تا 2009 پس از تغییر کاربریهای مرتع به مزارع نخود و چمنزار به مزارع گندم به ترتیب 96/0 و 05/1 مگاگرم در هکتار در سال کاهشیافته است. بیشترین مقادیر ذخایر کربن و نیتروژن آلی در اثر اعمال سناریو 3 (چرای حداقل دام با کوددهی بعلاوه مدیریت تناوب زراعی، بیخاکورزی و کوددهی) از سال 2020 لغایت 2100 در کاربری چمنزار به ترتیب با 16/71 و 01/4 مگاگرم در هکتار و کمترین مقادیر ذخایر کربن و نیتروژن آلی از سال 1978 لغایت 2009 به ترتیب در کاربری گندم با 75/27 و کاربری نخود با 29/2 مگاگرم در هکتار برآورد شد. نتایج مؤید آن است مدیریت چرای حداقل همراه با مصرف کود اوره در مراتع و چمنزارها و رعایت تناوب زراعی گندم – نخود – گندم - گلرنگ و بیخاکورزی و کشت مستقیم همراه با کوددهی با کود اوره، سوپر فسفات و کود حیوانی بهترین راهکارها و سناریوهای تعریفشده در جبران ذخایر کربن و نیتروژن آلی خاک و دستیابی به تولید پایدار در زراعت گندم و نخود در منطقه سارال کردستان است. | ||
کلیدواژهها | ||
ترسیب کربن؛ سناریوهای مدیریتی؛ مدلسازی؛ مالیسول؛ کربن آلی خاک | ||
مراجع | ||
Abdolahi, A., Nemati, A., & Valizadeh, G.R. )2015(. Study on effects of different crop rotations based on wheat on soil physicochemical properties and economical performance in dryland condition of Kermanshah. Iranian Journal of Rainfed Agriculture. 2(2), 161-202. (In Persian) Agricultural Research, Education and Extension Organization (AREEO). )2016(. Enhancing food security in Iran. Althoff, T.D., Menezes, R.S.C., de Siqueira Pinto, A., Pareyn, F.G.C., de Carvalho, A.L., Martins, J.C.R., de Carvalho, E.X., da Silva, A.S.A., Dutra, E.D., & Sampaio, E.V.D.S.B. (2018). Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems and Environment. 254, 26-34. Amari, P., & Keshmiri, F. (1990). Soil studies and land classification for irrigation and taming of Saral Research Station in Kurdistan Province. Soil and Water Research Institute. Technical Journal No. 837. (In Persian) Assis, C.P., de Oliveira T.S., da Nóbrega Dantas J. d. A., & de Sá Mendonça E. (2010). Organic matter and phosphorus fractions in irrigated agroecosystems in a semi-arid region of Northeastern Brazil. Agriculture, Ecosystems and Environment. 138(1-2), 74-82. Ayoubi, S., Emami, N., Ghaffari, N., Honarjoo, N., & Sahrawat, K. L. (2014). Pasture degradation effects on soil quality indicators at different hillslope positions in a semiarid region of western Iran. Environmental Earth Sciences. 71, 375–381. Azad, B., & Afzali, S.F. (2020). Simulating soil organic carbon dynamics as affected by different water erosion scenarios and grazing management in semi-arid rangelands of Bajgah using the Century model. Soil Management and Sustainable Production. 9(4), 69-78. Bayer, C., Martin-Neto, L., Mielniczuk, J., Diekow, J., & Amado, T.J.C. (2006). C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage. Geoderma. 133, 258–268. Bhattacharyya, T., Pal, K., Easter, M., Williams, S., Paustian, K., Milne, E., & Chandran P. (2007). Evaluating the Century C model using long-term fertilizer trials in the Indo-Gangetic Plains, India. Agriculture, Ecosystems and Environment. 122 (1), 73-83. Black, A.L. (1986). Bulk density. In: Editor Methods of soil analysis. Part 1. Physical and Mineralogical Method.SSSa/ASA. Agronomy Monograph 9(4), 374-380. Bordeleau, I.M., & Prevost, D. (1994). Nodulation and nitrogen fixation in extreme environment. Plant and Soil. 161, 115-125. Bortolon, E., Mielniczuk, J., Tornquist C., Lopes, F., & Fernandes, F. (2009). Simulação da dinâmica do carbono e nitrogênioem um Argissolo do Rio Grande do Sulusandomodelo Century. Revista Brasileira de Ciência do Solo. 33(6), 1635-1646. Bortolon, E.S.O., Mielniczuk, J., Tornquist, C.G., Lopes, F., & Bergamaschi, H. (2011). Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma. 168, 156–166. Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, second ed. American Society of Agronomy, Madison. WI, pp. 595–624. Carter, M. Gregorich, E., Acosta-Mercado, S., Anderson, D., & Lynn, T. (2008). Methods in soil protozoa. In: Soil Sampling and Methods of Analysis classification in semiarid mountainous environments. Geoderma. 193, 13-21. Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., & Cerri, C.C. (2003). Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal. 67(6), 1879-1887. Chen, H. Q., Marhan, S., Billen N., & Stahr, K. (2009). Soil organic carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg, southwest Germany. Journal Plant. Nutrition Soil Science. 172, 32-42. Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., Tang, Z., Tang, X., Zhou, G., Xie, Z., Zhou, D., Shangguan, Z., Huang, J., He, J.S., Wang, Y., Sheng, J., Tang, L., Li, X., Dong, M., Wu, Y., Wang, Q., Wang, Z., Wu, J., Chapin, F.S., & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences. 115 (16), 4027–4032. Chen, Y., Li, Y., Zhao, X., Awada, T., Shang, W., & Han, J. (2012). Effects of Grazing Exclusion on Soil Properties and on Ecosystem Carbon and Nitrogen Storage in a Sandy Rangeland of Inner Mongolia, Northern China. Environmental Management. 50, 622-632. Cui, X., Wang, Y., Niu, H., Wu, J., Wang, S., Schnug, E., Rogasik, J., Fleckenstein, J., & Tang, Y. (2005). Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research. 20, 519-527. Derner, J., & Schuman, G. (2007). Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. Journal of Soil and Water Conservation. 62, 77-85. Falloon, P., & Smith, P. (2002). Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management. 18(2), 101–111. Falloon, P., Jones, C.J., Cerri, C.E., Al-Adamat, R., Kamoni, P., Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K., & Milne, E. (2007). Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems and Environment. 122, 114–124. Geraei, D.S., Hojati, S., Landi, A., & Cano, A.F. (2016). Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Regional. 7(1), 29-37. Gilmanov, T.G., Parton, W.J., & Ojima, D.S. (1997). Testing the ‘CENTURY’ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecological Modelling. 96 (1-3), 191-210. Goh, T.B., Arnaud, R.J., & Mermut, A.R. (1993). Aggregate stability to water. In: Carter, M.R. (ed). Soil Sampling and Methods of Analysis.Canadian Society of Soil Science. Lewis Publishers, Boca Raton.177-180. Golchin, A., & Asgari, H. (2008). Land use effects on soil quality indicators in northeastern Iran. Australian Journal of Soil Research. 46, 27–36. Gomes, A.G., & Varriale, M.C. (2004). Modelagem de ecossistemas: umaintrodução. UFSM, Santa Maria, 2nd ed. 503 p. (In Portuguese) Guan, Z.H., Li X.G., Wang L., Mou X.M., & Kuzyakov Y. (2018). Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biology and Biochemistry, 123: 10-20. Gupta, S., & Kumar, S. (2017). Simulating climate change impact on soil carbon sequestration in agro-ecosystem of mid-Himalayan landscape using CENTURY model. Environment Earth Science. 76, 394. Halvorson, A.D., Peterson, G.A., & Reule, C.R. (2002). Tillage system and crop rotation effects on dryland crop yields and soil carbon in the central Great Plains. Agronmy Journal. 94, 1429–1436. Heidari, P., Hojati, S., Enayatizamir, N., & Rayatpisheh, A. (2016). Effects of land use change on C stock and some biological characteristics of soils in parts of Rakaat watershed, east of Khuzestan province. Iranian Journal of Range and Desert Research. 24, 819-835. (In Persian) Hickman, K. R., & Hartnett, D. C. (2002). Effects of grazing intensity on growth, reproduction, and abundance of three palatable forbs in Kansans tallgrass prairie. Plant Ecology. 159, 23-24. Hobley, E., Baldock, J., Hua, Q., & Wilson, B. (2017). Land-use contrasts reveal instability of subsoil organic carbon. Global Change Biology. 23 (2), 955–965. Holechek, J. L Pipe r, R.D., & Carlton, H.H. (1989) Range Management: Principles and Practices. Third edition. Prentice-Hall, Upper Saddle River, New Jersey. Jagadamma, S., & Lal, R. (2010). Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and Fertility of Soils, 46(6), 543-554. Kaczynski, R., Siebielec, G., & Hanegraaf, C. (2017). Modelling soil carbon trends for agriculture development scenarios at regional level. Geoderma. 286, 104-115. Kane, D., & Solutions, L.L.C. (2015). Carbon sequestration potential on agricultural lands: a review of current science and available practices. In Natl. Sustain. Agric. Coalit. Wash. DC USA. Karami, P. (2010). Simulation of rangeland ecosystems performance in west of Iran using CENTURY model (Case study: Saral region of Kurdistan). Ph.D Thesis in Rangeland Science, Gorgon University of Agricultural Sciences and Natural Resources. Karlen, D.L., Kumar, A., Kanwar, R.S., Cambardella, C.A., & Colvin, T.S. (1998). Tillage system effects on 15-year carbon-based and simulated N budgets in a tile-drained Iowa field. Soil Tillage Research. 48, 155–165. Kennedy, I. R., Choudhury, A. T. M. A., Kecskes, M. L., Roughley R. J., & Hien, N. T. (2004). Non symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology &Biochemistry. 36(8), 1229-1244. Klute, A. (1986). Water retention: Laboratory methods. In: Klute, A. (ed). Methods of soil analysis. Part 1. Physical and Mineralogical Methods.2nd ed. Agron.Monog.9.ASA/SSSA, Madison. 635-662. Lakhani, D. B. N. K., Brown, M. C., & Park, D. G. (1985). Early seral communities in ulimestone quarry: and experimental study of treatment effects on cover and richness of vegetation. Journal of Applied Ecology. 22, 90-473. Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climate Change. 51, 35–72. Lefèvre, C., Rekik, F., Alcantara, V., & Wiese, L. (2017). Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations (FAO). Leiber-Sauheitl, K., Fuß, R., & Freibauer. M. (2013). High greenhouse gas fluxes from grassland on histicgleysol along soil carbon and drainage gradients. Biogeosciences. 10, 11283–11317 Leite, L.F.C., Mendonça, E.S., & Machado, P.L.O.A. (2004). Simulaçãopelomodelo Century da dinâmica da matériaorgânica de um argissolo sob adubação mineral e orgânica. Revista Brasileira de Ciência do Solo. 28, 347–358 (In Portuguese). Liu, D., Huang Y., An, S., Sun H., Bhople P., & Chen Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena. 162: 345-353. Lopes, F., Merten, G.H., Mielniczuk, J., Tornquist, C.G., & Oliveira, E.S. (2008). Simulação da dinâmica do carbono do solo numamicrobacia rural pelomodelo Century. Pesquisa Agropecuária Brasileira. 43(6), 745-753. Martens, D.A., Reedy, T.E., & Lewis, D.T. (2003). Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology. 10, 65–78. Mcsherry, M.E., & Ritchie, M.E. (2013). Effects of grazing on grassland soil carbon: a global review. Global Change Biology. 19, 1347-1357. Metherel, A.K., Harving, L.A., Cole, C.V., & Parton, W.J. (1994). Century: soil organic matter model environment. Technical Documentation Agrosystem Version 4.0. USDAARS, Fort Collins. Mielniczuk, J., Bayer, C., Vezzani, F.M., Lovato, T., Fernandes, F.F., & Debarba, L. (2003). Manejo de solo e culturas e suarelação com osestoques de carbono e nitrogênio do solo. Tópicosem Ciência do Solo. 3, 209–241 (In Portuguese) Musinguzi, P., Ebanyat, P., Tenywa, J.S., Mwanjalolo, M., Basamba, T.A., Tenywa, M.M., & Porter, C. (2014). Using DSSAT-CENTURY model to simulate soil organic carbon dynamics under a low-input maize cropping system. Global Biogeochemical Cycles. 8, 105-123. Nabiollahi, K. (2005). Evolution of clay minerals and their relationship with different forms of potassium in the soils of Kharkeh research station in Kurdistan province. M.Sc. Thesis in Soil Science, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian). Nardoto, G.B., Ometto, J.P.H.B., Ehlerringer, J.R., Bastamante, M.M.C., & Martinelli, L.A. (2008). Understanding the influences of spatial patterns on N availability within the Brazilian Amazon Forest. Ecosystems. 11, 1234–1246. NREL. Natural Resource Ecology Laboratory. Century 4. Available at: www.nrel.colostate.edu/projects/century (Verified in 5 December 2009). Ouyang, W., Shan, Y., Hao, F., & Lin, C. (2014). Differences in soil organic carbon dynamics in paddy fields and drylands in northeast China using the CENTURY model. Agriculture, Ecosystems and Environment. 194, 38-47. Owensby, C.E., Myde, R.M., & Anderson, K.L. (1970). Effects of clipping and supplemental nitrogen and water on loamy upland bluestem range. Journal of Range Management·. 23, 6-341. Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC. Page, A.L., Miller, R.H., & Keeney, D.R. (1992). (ed.). Methods of soil analysis. Part. II.2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1159. Parras-Alcántara, L., Martín-Carrillo, M., & Lozano- García, B. (2013). Impacts of land use change in soil carbon and nitrogen in a Mediterranean agricultural area (Southern Spain). Solid Earth. 4, 167–177. Parton, W.J., Schimel, D.S., Cole, C.V., & Ojima, D.S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains Grasslands 1. Soil Science Society of America Journal. 51 (5), 1173-1179. Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., & Kamnalrut, A. (1993).Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global biogeochemical cycles. 7 (4), 785-809. Parton, W.J., Stewart, J.W., & Cole, C.V. (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry. 5 (1), 109-131. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., & Smith, P. (2016). Climate-smart soils. Nature. 532 (7597), 49-67. Paustian, K., Parton, W.J., & Persson, J. (1992). Modeling soil organic matter in organic amended and nitrogen-fertilized long-term plots. Soil Science Society of America Journal. 56, 476–488. Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensior, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Global Change Biology. 17, 2415–2427. Qiu, X., Peng, D., Wang, H., Wang, Z., & Cheng, S. (2019). Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators. 103, 236-247. Saied, M. S., Ghanbari, A., Ramroudi, M., & Khezri, A. (2016). Effects of Green Manure Management and Fertilization Treatments on the Chemical and Physical Properties and Fertility of Soil. Water and Soil Science. 21, 37-49. Schuman, G. E, Reeder, J. D, Manley, J.T, Hart, R. H., & Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed – grass rangeland. Ecological Applications. 9, 65-71. Sharifzadegan, M.H. (2019). Reviewing and preparing the planning document of Kurdistan province. Shahid Beheshti University. Tehran. Sicardi, M., Garcia-Prechac F., & Frioni L. (2004). Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Applied Soil Ecology. 27, 125–133. Siddique, I., Engel, V.L., Parrotta, J.A., Lamb, D., Nardoto, G.B., Ometto, J.P.H.B., Martinelli, L.A., & Schmidt, S. (2008). Dominance of legumes trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry. 88, 89–101. Singh, A.K., Rai A., & Singh N. (2016). Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma. 277, 41-50. Six, J., Conant, R.T., Paul, E.A., & Paustian, K. (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil. 241, 155–176. Six, J., Feller, C., Denef, K., Ogle, S.M., Sá, J.C.M., & Albrecht, A. (2002b). Soil organic matter, biota and aggregation in temperate and tropical soils - effects of no-tillage. Agronomy. 22, 755–775. Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC. Taghdisi Heydarian, Z., Khorasani, R., & Emami, H. (2019). Effect of zeolite and cow manure on some physical properties of soil. Iranian Journal of Water and Soil Conservation. 25(5), 149-166. (In Persian) Tornquist, C.G., Mielniczuk, J., & Cerri, C.E.P. (2009). Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century Model. Soil and Tillage Research. 105, 33-43. Trumbmore, S.E., Davidson, E.A., Barbosa, P., Nepstad, D.D. & Martinelli, L.A. (1995). Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles. 9, 515-528. UNFCCC. (2015). Decision 1/CP.21: Adoption of the Paris Agreement. Paris Climate Change Conference; 2015 Nov 30–Dec 11; Paris, France. Upendra, M.S., Zachary, N.S., Ermson, Z.N., Irenus, A.T., & Reddy, K.C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture, Ecosystems and Environment. 127, 234–240. Van Leeuwen, J.P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., de Ruiter, P.C., & Lair G.J. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology. 79, 14-20. Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. Journal of Dairy Science. 74, 3583-3597. Vereecken, H., Jansen, EJ, Hack-ten Broeke, M.J.D., Swerts, M., Engelke, R., Fabrewitz, S., & Hansen, S. (1991). Comparison of simulation results of five nitrogen models using different datasets. Commission of European Communities Soil and Groundwater Research, Report II Nitrate in Soils Luxembourg. Commission of the European Communities. 321–338. Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37 (1), 29-38. Waters, C.M., Orgill, S.E., Melville, G.J., Toole, I.D., & Smith, W.J. (2016). Management of grazing intensity in the semi-arid rangelands of southern Australia–effects on soil and biodiversity. Land Degradation and Development. 28(4), 1363-1375. Wilson, C., Papanicolaou, A., & Abaci, O. (2009). SOM dynamics and erosion in an agricultural test field of the Clear Creek, IA watershed. Hydrology and Earth System Sciences Discussions. 6, 1581-1619. Yazdanparast, P. (2008). Investigating the relationship between vegetation factors and habitat characteristics (Edaphic and Physiographic) case study of Saral Research Station area in Kurdistan Province, M.Sc. Thesis Islamic Azad University, Science and Research Branch. 88-87. (In Persian) | ||
آمار تعداد مشاهده مقاله: 1 تعداد دریافت فایل اصل مقاله: 5 |