
تعداد نشریات | 163 |
تعداد شمارهها | 6,763 |
تعداد مقالات | 72,849 |
تعداد مشاهده مقاله | 131,957,281 |
تعداد دریافت فایل اصل مقاله | 103,562,282 |
مقایسه عملکرد و اجزا عملکرد گندم رقم سیروان در خاکهای شنی اصلاحشده و اصلاحنشده در شرایط گلخانهای | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 4، تیر 1404، صفحه 949-964 اصل مقاله (1.58 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.386948.669852 | ||
نویسندگان | ||
سید محمد حسینی بادآشیانی1؛ احمد حیدری* 2؛ علیرضا راهب2؛ حسن اعتصامی1؛ محمدرضا بی همتا3؛ خدابخش گودرزوند چگینی4 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
3گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
4پژوهشگر ارشد مرکز تحقیقات حفاظت خاک و آب کوهین، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران، | ||
چکیده | ||
علیرغم نقش محوری گندم در تغذیه و اقتصاد جوامع کشت گندم در حال حاضر با چالشهای جدی مانند تغییر اقلیمی و کمبود آب مواجه است. در این پژوهش اثرات رس بنتونیت (25/6 و 5/12 g kg-1) ، کربوکسیمتیلسلولز ( 3 و 5 g kg-1) و مخلوط دو جدایه از باکتریهای اندوفیت Pantoea agglomerans (R11) و رایزوشیت Pseudomonas sp (E1)، (10 و 20 mL. kg-1) برای اصلاح خصوصیات خاک بر روی رشد، عملکرد و اجزاء عملکرد گندم رقم سیروان در شرایط گلخانهای و در قالب طرح آماری کاملا تصادفی مورد بررسی قرار گرفت. ابتدا تیمارهای موثر بر خصوصیات خاک در طی دوره انکوباسیون شناسایی شدند و 5 تیمار ترکیبی منتخب شامل B6.25C5M20؛ B12.5C5M10؛ B12.5C5M20؛ B12.5C3M20 وB12.5C3M10 به همراه نمونه شاهد مثبت و منفی در مجموع 7 تیمار با 3 تکرار و 21 گلدان تهیه شد. در هر گلدان تعداد 5 بذر گندم کاشته شد و خصوصیات مورفومتری و عملکرد گندم اندازهگیری شدند. نتایج نشان داد تیمار B12.5C5M20 بیشترین اثر را بر عملکرد گندم و اجزاء عملکرد دارد. به طوریکه باعث افزایش معنیدار طول خوشه (33/5 -33/7(cm طول ریشه ( cm 13/2- 67/9)، تعداد گلچه (66/10- 3/15 عدد)، تعداد دانه در سنبله (33/8-67/20 عدد)، وزن هزار دانه (g 26/10- 13/25)، عملکرد بیولوژیک (g 39/2- 28/6)، عملکرد دانه (g 47/0- 43/2) نسبت به تیمار شاهد شد، ارتفاع گیاه و شاخص برداشت با وجود افزایش نسبت به گیاه شاهد تفاوت معنیداری نشان ندادند. اصلاح خاک شنی با تیمارهای به کار رفته راهکاری مفید برای تولید گندم در این اراضی میباشد. | ||
کلیدواژهها | ||
اصلاح خاک؛ سیروان؛ افزایش تولید گندم | ||
مراجع | ||
Abd El-Ghany, B. F., Arafa, R. A., El-Rahmany, T. A., & El-Shazly, M. M. (2010). Effect of some soil microorganisms on soil properties and wheat production under North Sinai conditions. J. Appl. Sci. Res, 6(5), 559-579. Afzal, J., Depar, N., Arshad, M., Rao, S., Rajpar, I., & Shah, A. (2014). WHEAT RESPONSE TO ACC-DEAMINASEFLUORESCENT PSEUDOMONADS WITH VARYING PHOSPHATE SOLUBILIZING ACTIVITY ON A PHOSPHORUS DEFICIENT SOIL. JAPS: Journal of Animal & Plant Sciences, 24(6). Aleem, M., Hanna, N., & Sabry, S. (2000) Relationship between wheat root characteristics and grain yield in sandy and clay soils. Alghamdi, A. G., Majrashi, M. A., & Ibrahim, H. M. (2023). Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability, 16(1), 46. Babla, M., Katwal, U., Yong, M.-T., Jahandari, S., Rahme, M., Chen, Z.-H., & Tao, Z. (2022). Value-added products as soil conditioners for sustainable agriculture. Resources, conservation and recycling, 178, 106079. Bednik, M., Medyńska-Juraszek, A., Dudek, M., Kloc, S., Kręt, A., Łabaz, B., & Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496. Bell, R., & Seng, V. (2007). The management of agroecosystems associated with sandy soils. Management of tropical sandy soils for sustainable development: proceedings of the International Conference on the Management of Tropical Sandy Soils, Khon Kaen, Thailand, Blake, G. (1986). Bulk density. Methods of Soil Analysis. Part, 1. Bottomley, P. J., Angle, J. S., & Weaver, R. (2020). Methods of soil analysis, Part 2: Microbiological and biochemical properties (Vol. 12). John Wiley & Sons. Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 901-926. Danish, S., Hasnain, Z., Dawar, K., Fahad, S., Shah, A. N., Salmen, S. H., & Ansari, M. J. (2024). Enhancing maize resilience to drought stress: the synergistic impact of deashed biochar and carboxymethyl cellulose amendment. BMC Plant Biology, 24(1), 139. Dhawi, F. (2023). How can we stabilize soil using microbial communities and mitigate desertification? Sustainability, 15(1), 863. El-Nagar, D. A., & Sary, D. H. (2021). Synthesis and characterization of nano bentonite and its effect on some properties of sandy soils. Soil and tillage research, 208, 104872. Farahani, M., Mirzakhani, M., & Sajedi, N. (2017). Effect of water absorbent materials on some agronomic traits and seed protein of wheat under water deficit stress. Plant Production Technology, 7(2), 27-37. Huluka, G., & Miller, R. (2014). Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180-184. Hussain, Z., Cheng, T., Irshad, M., Khattak, R. A., Yao, C., Song, D., & Mohiuddin, M. (2022). Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. Plos one, 17(12), e0278824. Iqbal, R., Valipour, M., Ali, B., Zulfiqar, U., Aziz, U., Zaheer, M. S., Sarfraz, A., Javed, M. A., Afridi, M. S., & Ercisli, S. (2024). Maximizing wheat yield through soil quality enhancement: A combined approach with Azospirillum brasilense and bentonite. Plant Stress, 11, 100321. Jackson, R. S. (2008). Postfermentation treatments and related topics. Wine science, 418-519. Kemper, W., & Chepil, W. (1965). Size distribution of aggregates. Methods of soil analysis: Part 1 physical and mineralogical properties, including statistics of measurement and sampling, 9, 499-510. Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72, 195-205. Khan, W. U. D., Wei, X., Ali, H. H., Zulfiqar, F., Chen, J., Iqbal, R., Zaheer, M. S., Ali, B., Ghafoor, S., & Rabiya, U. E. (2022). Investigating the role of bentonite clay with different soil amendments to minimize the bioaccumulation of heavy metals in Solanum melongena L. under the irrigation of tannery wastewater. Frontiers in Plant Science, 13, 958978. Lei, Z., Xu, S.-t., Monreal, C. M., Mclaughlin, N. B., Zhao, B.-p., Liu, J.-H., & Hao, G.-c. (2022). Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. Journal of Integrative Agriculture, 21(1), 208-221. Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis: Part 3 Chemical methods, 5, 437-474. LU, Q.-m., FENG, X., SUN, K.-j., & LIAO, Z.-w. (2005). Study on the use of polymer/bentonite composites for controlled release. Journal of Plant Nutrition and Fertilizers, 11(2), 183-186. Malakouti, M., Moshiri, F., & Ghaibi, M. (2005). Optimum levels of nutrients in soil and some agronomic and horticultural crops. Soil and Water Research Institue. Technical Bulletin(405). McKissock, I., Walker, E., Gilkes, R., & Carter, D. (2000). The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. Journal of hydrology, 231, 323-332. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., & Liu, J. (2020). Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Scientific Reports, 10(1), 18282. Naderi, K., Etesami, H., Alikhani, H. A., & Arani, A. M. (2022). Potential use of endophytic and rhizosheath bacteria from the desert plant Stipagrostis pennata as biostimulant against drought in wheat cultivars. Rhizosphere, 24, 100617. Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63(4), 770-778. Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y., & Zhang, J. (2019). Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils. Advances in Polymer Technology, 2019(1), 6869454. Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture. Pourmansour, S., Razzaghi, F., Sepaskhah, A., & Moosavi, A. A. (2019). Wheat growth and yield investigation under different levels of biochar and deficit irrigation under greenhouse conditions. Water and Irrigation Management, 9(1), 15-28. Qin, C.-C., Abdalkarim, S. Y. H., Zhou, Y., Yu, H.-Y., & He, X. (2022). Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. Journal of Cleaner Production, 370, 133602. Roy, T., Kumar, S., Chand, L., Kadam, D., Bihari, B., Shrimali, S., Bishnoi, R., Maurya, U., Singh, M., & Muruganandam, M. (2019). Impact of Pusa hydrogel application on yield and productivity of rainfed wheat in North West Himalayan region. Current science, 116(7), 1246-1251. Semalulu, O., Elobu, P., Namazzi, S., Kyebogola, S., & Mubiru, D. (2017). Higher cereal and legume yields using Ca-bentonite on sandy soils in the dry eastern Uganda: increased productivity versus profitability. J. Agric. Res, 5(2), 140-147. Shao, F., Zeng, S., Wang, Q., Tao, W., Wu, J., Su, L., Yan, H., Zhang, Y., & Lin, S. (2023). Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. Journal of Environmental Management, 331, 117305. Sharma, P., Pandey, R., & Chauhan, N. S. (2024). Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Frontiers in Microbiology, 15, 1467082. Shuman, L. (1985). Fractionation method for soil microelements. Soil science, 140(1), 11-22. Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229. Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid land research and management, 21(1), 37-49. Walkly, A., & Black, I. (1934). An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil science society of America journal, 37, 29-38. Wang, Y., Gao, M., Chen, H., Chen, Y., Wang, L., & Wang, R. (2023). Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability, 15(12), 9602. Yang, Q., Pei, X., & Fu, C. (2022). Effect of Polymer Mixtures on Physical-Chemical Properties of Sandy Soil and Plant Growth. Frontiers in Ecology and Evolution, 10, 889357. Zaheer, M. S., Ali, H. H., Erinle, K. O., Wani, S. H., Okon, O. G., Nadeem, M. A., Nawaz, M., Bodlah, M. A., Waqas, M. M., & Iqbal, J. (2022). Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). Environmental Science and Pollution Research, 1-11. Zaheer, M. S., Ali, H. H., Iqbal, M. A., Erinle, K. O., Javed, T., Iqbal, J., Hashmi, M. I. U., Mumtaz, M. Z., Salama, E. A., & Kalaji, H. M. (2022). Cytokinin production by Azospirillum brasilense contributes to increase in growth, yield, antioxidant, and physiological systems of wheat (Triticum aestivum L.). Frontiers in Microbiology, 13, 886041. Zaheer, M. S., Raza, M. A. S., Saleem, M. F., Erinle, K. O., Iqbal, R., & Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis, ,2533-2531. 50(20). Zhang, Y., Tian, X., Zhang, Q., Xie, H., Wang, B., & Feng, Y. (2022). Hydrochar-embedded carboxymethyl cellulose-g-poly (acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. Journal of Bioresources and Bioproducts, 7(2), 116-127. | ||
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 2 |