
تعداد نشریات | 163 |
تعداد شمارهها | 6,763 |
تعداد مقالات | 72,849 |
تعداد مشاهده مقاله | 131,955,413 |
تعداد دریافت فایل اصل مقاله | 103,561,522 |
بررسی تاثیر نوسان متغیرهای هواشناسی بر مراحل فنولوژی درختان جنگلهای معتدله منطقه شهر گرگان با استفاده از سنجنده مودیس | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 4، تیر 1404، صفحه 881-897 اصل مقاله (1.89 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2025.383968.669815 | ||
نویسندگان | ||
هامون مکوندی1؛ نوذر قهرمان* 2 | ||
1گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی دانشگاه تهران، کرج، ایران | ||
2گروه مهندسی ابیاری-دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
در این تحقیق با استفاده از دادههای هواشناسی دما و بارش و سری زمانی شاخص پوشش گیاهی (EVI) سنجنده MODIS، تغییرات زمانی در مراحل فنولوژی شروع (SOS)، پایان (EOS) و طول (LOS) فصل رشد جنگلهای معتدله جنوب شهر گرگان با سه روش هموارسازی سری زمانی تجزیه و تحلیل گردید. نتایج نشان داد که در هر سه روش هموارسازی با افزایش میانگین دمای حداکثر (T ̅_max) و میانگین دمای حداقل (T ̅_min) در بازه 10 روز قبل از مرحله فنولوژی SOS ، این مرحله به تاخیر میافتد و با کاهش T ̅_max و T ̅_min در بازه 10 روز قبل از مرحله فنولوژی EOS ، این مرحله نیز با تعویق مواجه میشود. در روشهای گوسی و ساویتسکی گولای (05/0 >p) و لجستیک دوگانه (01/0 >p)، همبستگی بین LOS و T ̅_min و T ̅_max در فصل بهار؛ و در هر سه روش هموارسازی، همبستگی SOS و EOS با T ̅_max در فصل تابستان، به طور معنی داری مثبت ارزیابی شد (05/0 >p) و همبستگی SOS و EOS با T ̅_min در فصل تابستان ضعیف و مثبت بود. همچنین مراحل فنولوژی SOS، EOS و LOS هیچ ارتباط معنیداری را با بارش در فصول مختلف نشان ندادهاند. بر اساس این مطالعه، دما مهمترین عامل در تغییرپذیری زمان وقوع SOS، EOS و LOS در جنگل مطالعاتی در استان گلستان است و افزایش و کاهش T ̅_max و T ̅_min باعث نوسانات روزانه معنیداری در زمان وقوع مراحل فنولوژی میشود. | ||
کلیدواژهها | ||
بارش؛ جنگل؛ دما؛ فنولوژی؛ هموارسازی سری زمانی | ||
مراجع | ||
Bay, N., & Davoudi, M. (2010). Analysis and prediction of some climatic elements of Gorgan city. The Quarterly Journal of Zagros Geographical Landscape, 2(4), 99-114. SID. https://sid.ir/paper/175733/fa. (in Persian) Bonhomme, R. (2000). Bases and limits to using ‘degree.day’ units. European Journal of Agronomy, 13(1), 1-10. https://doi.org/10.1016/S1161-0301(00)00058-7. Clerici, N., Weissteiner, C.J., Halabuk, A., Hazeu, G.W., Roerink, G.J., & Mücher, S. (2012). Phenology related measures and indicators at varying spatial scales. Investigation of phenology information for habitat classification using SPOT VGT and MODIS NDVI data. Applied Spatial Research Earth Observation and Environmental Informatics, Wageningen, Alterra, Alterra-Report 2259. 112 pp.; 33 figs.; 15 tab.; 34 ref. Dambreville, A., Lauri, P.E., Normand, F., & Guedon, Y. (2014). Analysing growth and development of plants jointly using developmental growth stages. Annals of Botany, 115(1), 93–105. doi: 10.1093/aob/mcu227. Didan, K., Munoz, A.B., Solano, R., & Huete, A. (2015). MODIS Vegetation Index User’s Guide. (MOD13 Series). Version 3. The University of Arizona, Tucson. Eklundha, L., & Jönsson, P. (2017). TIMESAT 3.3 with seasonal trend decomposition and parallel processing. Software Manual, Lund University and Malmö University, Sweden. Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., & Janssens, I.A. (2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104–107. doi: 10.1038/nature15402. Gallinat A.S., Primack R.B., & Wagner D.L. (2015). Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 30(3), 169–176. https://doi.org/10.1016/j.tree.2015.01.004. Gatsuk, L.E., Smirnova, O.V., Vorontzova, L.I., Zaugolnova, L.B., & Zhukova, L.A. (1980). Age states of plants of various growth forms: a review. Journal of Ecology, 68(68), 675–696. DOI:10.2307/2259429. Gerst, K.L., Rossington, N.L., & Mazer, S.J. (2017). Phenological responsiveness to climate differs among four species of Quercus in North America. Journal of Ecology, 105(6): 1610–1622· https://doi.org/10.1111/1365-2745.12774. Gordo, O., & Sanz, J.J. (2010). Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology, 16(3): 1082–1106. https://doi.org/10.1111/j.1365-2486.2009.02084.x. Helman, D. (2018). Land surface phenology: What do we really ‘see’ from space?. Science of the Total Environment, 618, 665-673. https://doi.org/10.1016/j.scitotenv.2017.07.237. Huete, A.R. (2012). Vegetation indices, remote sensing and forest monitoring. Geography Compass, 6(9): 513–532. https://doi.org/10.1111/j.1749-8198.2012.00507.x. Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B.H., Milliman, T., & Richardson, A.D. (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117(D11), 307–321. https://doi.org/10.1016/j.rse.2011.10.006. Jönsson, P., & Eklundh, L. (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences, 30(8), 833-845. https://doi.org/10.1016/j.cageo.2004.05.006. Katal, N., Rzanny, M., Mäder, P., & Wäldchen, J. (2022). Deep Learning in Plant Phenological Research: A Systematic Literature Review. Front Plant Science. 13, 805738. doi: 10.3389/fpls.2022.805738. Keenan, T.F., Gray, J., Friedl, M., Toomey, M., Bohrer, G., Hollinger, D.Y., Munger, J.W., O’Keefe, J., Schmid, H.P., Wing, I.S., Yang, B., & Richardson, A.D. (2014). Net carbon uptake has increased through warming induced changes in temperate forest phenology. Nature Climate Change, 4, 598–604. DOI:10.1038/NCLIMATE2253. Khalili, A., Bazrafshan, J., & Cheraghalizadeh, M. (2022). A Comparative study on climate maps of Iran in extended de Martonne classification and application of the method for world climate zoning. Journal of Agricultural Meteorology, 10(1), 3-16. 10.22125/agmj.2022.156309. (in Persian) Li, K.; Wang, C., Sun, Q., Rong, G., Tong, Z., Liu, X., & Zhang, J. (2021). Spring Phenological Sensitivity to Climate Change in the Northern Hemisphere: Comprehensive Evaluation and Driving Force Analysis. Remote Sensing, 13(10), 1972. https://doi.org/10.3390/ rs13101972. Li, X., Guo, W., Chen, J., Ni, X., & Wei, X. (2019). Responses of vegetation green-up date to temperature variation in alpine grassland on the Tibetan Plateau. Ecological Indicators, 104(5972)و 390-397. DOI:10.1016/j.ecolind.2019.05.003. Liang, L. (2019). Phenology. Elsevier. University of Kentucky, Lexington, KY, United States. Liang, L., Mark, D., Schwartz, M.D., & Fei, S. (2011). Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sensing of Environment, 115(1), 143–157. https://doi.org/10.1016/j.rse.2010.08.013. Lieth, H. (1974). Phenology and seasonal modeling. vol. 8. Springer-Verlag. New York. Liu, Q., Fu, Y.H., Zeng, Z., Huang, M., Li, X., & Piao, S., (2016a). Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 22(2), 644–655. https://doi.org/10.1111/gcb.13081. Liu, Q., Fu, Y.H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., Janssens, I.A., & Piao, S. (2016b). Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 22(11), 3702–3711. https://doi.org/10.1111/gcb.13311. Liu, Y., Shen, X., Zhang, J., Wang, Y., Wu, L., Ma, R., Lu, X., & Jiang, M. (2023). Variation in Vegetation Phenology and Its Response to Climate Change in Marshes of Inner Mongolian. Plants, 12(11): 2072. https:// doi.org/10.3390/plants12112072. Ma, R., Shen, X., Zhang, J., Xia, C., Liu, Y., Wu, L., Wang, Y., Jiang, M., & Lu, X. (2022). Variation of vegetation autumn phenology and its climatic drivers in temperate grasslands of China. International Journal of Applied Earth Observation and Geoinformation, 114, 103064. https://doi.org/10.1016/j.jag.2022.103064. Malayeri, F., Ashourloo, D., Shakiba, A., Matkan, A.A. & Aghighi, H. (2018). Investigating the Effects of Climate Change on Vegetation Phenology Using AVHRR Time Series Data. Journal of Agroecology, 8 (2), 98-117. (in Persian) Masihpoor, M., Darvishsefat, A.A., Rahmani, R., & Fatehi, P. (2021). Phenological parameters trend of the southern Zagros forests based on MODIS-NDVI time series during 2000-2017. Iranian journal of Forest, 12(4), 577-590. DOI:10.22034/ijf.2021.127807 . (in Persian) Matthews, E.R., & Mazer, S.J. (2015). Historical changes in flowering phenology are governed by temperature * precipitation interactions in a widespread perennial herb in western North America. New Phytologist, 210(1), 157-167. doi: 10.1111/nph.13751. Menzel, A., Sparks, T.H., Estrella, N., & Roy, D.B. (2006). Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography, 15(5), 498–504. doi: 10.1111/j.1466-822X.2006.00247.x Piao, S., Fang, J., Zhou, L., Ciais, P., & Zhu, B. (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4), 672-685. DOI:10.1111/j.1365-2486.2006.01123.x. Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y,H., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922–1940. https://doi.org/10.1111/gcb.14619. Piao, S., Tan, J., Chen, A., Fu, Y.H., Ciais, P., Liu, Q., Janssens, I.A., Vicca, S., Zeng, Z., Jeong, S.J., Li, Y., Myneni, R.B., Peng, S., Shen, M., & Penuelas, J. (2015). Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 6(1), 6911. DOI: 10.1038/ncomms7911. Rayegani, B., Arzani, H., Heydari Alamdarloo, E., & Moghadami, M.M. (2019). Application of remote sensing to assess climate change effects on plant productivity and phenology (Case study area: Tehran Province). Rangelandsrm, 13(3), 450-460. (in Persian) Richardson, A.D., Anderson, R.S., Arain, M.A., Barr, A.G., Bohrer, G., Chen, G., Chen, J.M., Ciais, P., Davis, K.J., Desai A.R., Dietze, M.C., Dragoni, D., Garrity, S.R., Gough, C.M., Grant, R., Hollinger, D.Y., Margolis, H.A., McCaughey, H., Migliavacca, M., Monson, R.K., Munger, J,W., Poulter, B., Raczka, B.M., Ricciuto, D.M., Sahoo, A.K., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J., & Xue, Y. (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the north American carbon program site synthesis. Global Change Biology, 18(2), 566–584. https://doi.org/10.1111/j.1365-2486.2011.02562.x. Schwartz, M.D. (2013). Phenology: An integrative environmental science. Springer, The Netherlands, Dordrecht. Schwartz, M.D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 12(2), 343–351. doi: 10.1111/j.1365-2486.2005.01097.x White M.A., Running, S.W., & Thornton, P.E. (1999). The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42(3), 139-145. Wu, C., Gonsamo, A., Chen, J.M., Kurz, W.A., Price, D.T., Lafleur, P.M., Jassal, R.S., Dragoni, D., Bohrer, G., Gough, C.M., Verma. S.B., Suyker, A.E., & Munger, J.W. (2012). Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global and Planetary Change, 92–93, 179-190. https://doi.org/10.1016/j.gloplacha.2012.05.021. Xia, J., Niu, S., Ciais, P., Janssens, I.A., Chen, J., Ammann, C., Arain, A., Blanken, P.D., Cescatti, A., Bonal, D., Buchmann, N., Curtis, P.S., Chen, S., Dong, J., Flanagan, L.B., Frankenberg, C., Georgiadis, T., Gough, C.M., Hui, D., Kiely, G., Li, J., Lund, M., Magliulo, V., Marcolla, B., Merbold, L., Montagnani, L., Moors, E.J., Olesen, J.E., Piao, S., Raschi, A., Roupsard, O., Suyker, A.E., Urbaniak, M., Vaccari, F.P., Varlagin, A., Vesala, T., Wilkinson, M., Weng, E., Wohlfahrt, G., Yan, L., & Luo, Y. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Ecology, 112(9): 2788–2793. https://doi.org/10.1073/pnas.1413090112. | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 1 |