- Ashford, L. S., Smith, R. R., De Souza, R. M., Fikree, F. F., & Yinger, N. V. (2006). Creating windows of opportunity for policy change: incorporating evidence into decentralized planning in Kenya. Bulletin of the World Health Organization, 84(8), 669-672.
- Ahn, N. (2017). Comparing NLP methods for identifying policy decisions in government documents. Poliinformatics of Lawmaking. https://natalieahn.github.io/Ahn_PINet.pdf
- Brescia, W. F., Swartz, J., Pearman, C., Balkin, R., & Williams, D. (2004). Peer teaching in web-based threaded discussions. Journal of Interactive Online Learning, 3(2), 1-22.
- Babatunde, I. D. Enhancing Contract Management through Natural Language Processing (NLP): A Case Study of Three African Countries. In Deep Learning Indaba 2023. file:///C:/Users/98912/Downloads/Formatting_Instructions_For_DLI_2023_Accra__Ghana2.pdf
- Boeije H. (2002). A Purposeful Approach to the Constant Comparative Method in the Analysis of Qualitative Interviews, Quality & Quantity, 36, 391–409.
- Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and be (com) ing a knowing researcher. International journal of transgender health, 24(1), 1-6.
- Cairney, P. (2016). The politics of evidence-based policymaking. Palgrave Macmillan.
- Edwards, M. (2005). Social science research and public policy: narrowing the divide 1. Australian Journal of Public Administration, 64(1), 68-74.
- Gokhberg, L. (2020). Use AI to mine literature for policymaking. Nature, 583(7816), 360-360. doi: https://doi.org/10.1038/d41586-020-02086-x
- Gray, J. M. (2008). 13 Evidence-based policy making. Getting Research Findings into Practice, 154. https://doi.org/10.1002/9780470755891.ch13
- Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297. 10.1093/pan/mps028
- Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26(1-2), 147-169. 10.1080/10919392.2015.1125187
- Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media (Vol. 8, No. 1, pp. 216-225). https://doi.org/10.1609/icwsm.v8i1.14550
- Hovy, D., & Spruit, S. L. (2016, August). The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 591-598). https://www.semanticscholar.org/paper/The-Social-Impact-of-Natural-Language-Processing-Hovy-Spruit/6a0388c46f2aff013343fdafaaffacf56a315915
- Hornby, P. and Perera, H.S.R. (2002) A development framework for promoting evidence‐based policy action: drawing on experiences in Sri Lanka. The International Journal of Health Planning and Management 17(2), 165‐183.
- Jacobi, C., van Atteveldt, W., & Welbers, K. (2016). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 4(1), 89-106. https://doi.org/10.1080/21670811.2015.1093271
- Jin, Z., & Mihalcea, R. (2022). Natural language processing for policymaking. In Handbook of Computational Social Science for Policy (pp. 141-162). Cham: Springer International Publishing.
- Kingdon, J. W. (1996) Young, E., & Quinn, L. (2002). Writing effective public policy papers. Open Society Institute, Budapest.
- Lim MG, Sandra. (2023). Unlocking the Power of Evidence-Based Policy-Making Series: Integrating Research with Artificial Intelligence. Retrieved from https://medium.com/@sandralmg03/unlocking-the-power-of-evidence-based-policy-making-series-integrating-research-with-artificial-89ae1dde5723
- Miao, F., & Holmes, W. (2021). Artificial Intelligence and Education. Guidance for Policy-makers. Retrieved from https://discovery.ucl.ac.uk/id/eprint/10130180/1/Miao%20and%20Holmes%20-%202021%20-%20AI%20and%20education%20guidance%20for%20policy-makers.pdf
- Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60. https://doi.org/10.1016/j.futures.2017.03.006
- Mehr, H., Ash, H., & Fellow, D. (2017). Artificial intelligence for citizen services and government. Ash Cent. Democr. Gov. Innov. Harvard Kennedy Sch., no. August 1-12. https://ash.harvard.edu/wp-content/uploads/2024/02/artificial_intelligence_for_citizen_services.pdf
- Meloche, R. (2023). Formalizing Contract Refinements Using a Controlled Natural Language (Doctoral dissertation, Université d'Ottawa/University of Ottawa). https://ruor.uottawa.ca/server/api/core/bitstreams/a0297af1-9a59-4c1c-86a7-cade4d96869e/content
- Marwala, T. (2023). Natural language processing in politics. In Artificial intelligence, game theory and mechanism design in politics (pp. 99-115). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5103-1_7
- Naderi, N., & Hirst, G. (2017). Classifying frames at the sentence level in news articles. Policy, 9, 4-233. https://www.cs.toronto.edu/pub/gh/Naderi+Hirst-Frames-RANLP-2017.pdf
- Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: fast and robust models for biomedical natural language processing. arXiv preprint arXiv:1902.07669. https://doi.org/10.48550/arXiv.1902.07669
- Newman, J., & Mintrom, M. (2023). Mapping the discourse on evidence-based policy, artificial intelligence, and the ethical practice of policy analysis. Journal of European Public Policy, 1-21. https://doi.org/10.1080/13501763.2023.2193223
- Nutley, S., Davies, H., & Walter, I. (2002). Evidence based policy and practice: Cross sector lessons from the UK (Vol. 9). Swindon: ESRC UK Centre for Evidence Based Policy and Practice. file:///C:/Users/98912/Downloads/Evidence_Based_Policy_and_Practice_Cross_Sector_Le.pdf
- O'Dwyer, L. (2004). A critical review of evidence-based policymaking. https://www.semanticscholar.org/paper/Evidence-based-policymaking%3A-A-review-Strydom-Funke/edf9b2ab11837290189f86d372adf31ff00cbe10
- Parkhurst, J. (2017). The politics of evidence: from evidence-based policy to the good governance of evidence (p. 182). Taylor & Francis. https://doi.org/10.4324/9781315675008
- Perini, D. J., Batarseh, F. A., Tolman, A., Anuga, A., & Nguyen, M. (2023). Bringing dark data to light with AI for evidence-based policymaking. In AI Assurance (pp. 531-557). Academic Press. DOI: 10.1016/B978-0-32-391919-7.00030-5
- Peng, Y., & Dredze, M. (2015). Named entity recognition for Chinese social media with jointly trained embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 548-554). https://www.semanticscholar.org/paper/Named-Entity-Recognition-for-Chinese-Social-Media-Peng-Dredze/d64561879a2fbd3d39a5e876a667ffa4561eed80
- Prabhakaran, V., Arora, A., & Rambow, O. (2014, October). Staying on topic: An indicator of power in political debates. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1481-1486). https://www.semanticscholar.org/paper/Staying-on-Topic%3A-An-Indicator-of-Power-in-Debates-Prabhakaran-Arora/469a4152eeeda5ed2c4a9ef64c9d94ed881d57e8
- Ranjan, M., Tiwari, S., Sattar, A. M., & Tatkar, N. S. (2024). A New Approach for Carrying Out Sentiment Analysis of Social Media Comments Using Natural Language Processing. Engineering Proceedings, 59(1), 181. https://doi.org/10.3390/engproc2023059181
- Sim, Y., Acree, B. D., Gross, J. H., & Smith, N. A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 91-101). https://homes.cs.washington.edu/~nasmith/papers/sim+acree+gross+smith.emnlp13-supp.pdf
- Smith, T. B., Vacca, R., Mantegazza, L., & Capua, I. (2021). Natural language processing and network analysis provide novel insights on policy and scientific discourse around Sustainable Development Goals. Scientific reports, 11(1), 22427. https://doi.org/10.1038/s41598-021-01801-6
- Sutherland, W. J., & Burgman, M. (2015). Policy advice: use experts wisely. Nature, 526(7573), 317-318. file:///C:/Users/98912/Downloads/526317a.pdf
- Taeihagh, A. (2021). Governance of artificial intelligence. Policy and society, 40(2), 137-157. https://doi.org/10.1080/14494035.2021.1928377
- Upreti, K., Verma, A., Mittal, S., Vats, P., Haque, M., & Ali, S. (2023, June). A Novel Framework for Harnessing AI for Evidence-Based Policymaking in E-Governance Using Smart Contracts. In International Conference on Advanced Communication and Intelligent Systems (pp. 231-240). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45124-9_18
- van der Voorn, T., Quist, J., Pahl-Wostl, C., & Haasnoot, M. (2017). Envisioning robust climate change adaptation futures for coastal regions: a comparative evaluation of cases in three continents. Mitigation and Adaptation Strategies for Global Change, 22, 519-546. DOI 10.1007/s11027-015-9686-4
- Wirjo, A., Calizo,S., Nino Vasquez, G., & San Andres, E. A.(2022). Artificial Intelligence in Economic Policymaking. APEC Policy Support Unit. Retrieved from https://www.apec.org/publications/2022/11/artificial-intelligence-in-economic-policymaking
- Wyner, A., & Van Engers, T. (2010). A framework for enriched, controlled on-line discussion forums for e-government policymaking. na. file:///C:/Users/98912/Downloads/A_framework_for_enriched_controlled_on-line_discus.pdf
- Young, E., & Quinn, L. (2002). Writing effective public policy papers. Open Society Institute, Budapest. https://www.nccmt.ca/registry/resource/pdf/94.pdf
- Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. ieee Computational intelligenCe magazine, 13(3), 55-75. 10.1109/MCI.2018.2840738
- Yaros, O., Bruder, A., Hajda, O., & Graham, E. 2021. The European Union proposes new legal framework for AI. Mayer Brown, May, 5. https://www.mayerbrown.com/en/perspectives-events/publications/2021/05/the-european-union-proposes-new-legal-framework-for-artificial-intelligence.
- Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., ... & Garlough, C. (2019). Whose lives matter? Mass shootings and social media discourses of sympathy and policy, 2012–2014. Journal of Computer-Mediated Communication, 24(4), 182-202. https://doi.org/10.1093/jcmc/zmz009
|