
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,830 |
تعداد مشاهده مقاله | 131,665,494 |
تعداد دریافت فایل اصل مقاله | 103,434,092 |
ساخت شبکه جزایر حرارتی شهری بر اساس تجزیهوتحلیل شبکه مورفولوژیک و تئوری گراف | ||
محیط شناسی | ||
دوره 51، شماره 1، خرداد 1404، صفحه 19-40 اصل مقاله (1.12 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2025.385006.1008547 | ||
نویسندگان | ||
مهدیس سادات؛ اسماعیل صالحی* ؛ محمود ذوقی | ||
گروه برنامه ریزی، مدیریت محیط زیست و HSE، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
هدف: افزایش آسیبپذیری اکولوژیکی در شهرها به سبب افزایش دمای آنها، طی سالیان اخیر بسیار مورد توجه قرارگرفته است. شناسایی دقیق شبکه جزیره گرمایی شهری برای کاهش مؤثر اثر آن بسیار مهم است. در بسیاری از تحقیقات صورت گرفته در این زمینه، عمدتاً تأثیر اتصال جزایر حرارتی بر این شبکهها نادیده گرفته شده است. این مطالعه جهت پرداختن به این شکاف تحقیقاتی، با ایجاد یک شبکه جزایر گرمایی شهری بر اساس دیدگاه اتصال در راستای درک ویژگیهای ساختاری اثر این شبکه و ارزیابی آن در راستای تعیین سطح اولویت برای اجرای اقدامات کاهنده دما در کلانشهر تهران انجام شده است. روش پژوهش: جهت دستیابی به هدف فوق، پس از تجزیهوتحلیل دمای سطح زمین در شهر تهران، مناطق دارای دمای بالا شناسایی گردید. سپس تحلیل الگوی فضایی مورفولوژیکی، ارزیابی ساختار مورفولوژیکی و شناخت اهمیت منابع جزیره گرمایی صورت گرفت. پس از آن، سطح مقاومت در برابر انتشار حرارتی ساخته و با استفاده از روش حداقل مقاومت تجمعی، شناسایی کریدورهای انتقال حرارت و تجزیهوتحلیل آنها صورت گرفت. یافتهها: یافتههای این پژوهش نشان میدهد که 29 عدد هسته جزیره حرارتی قوی در شهر تهران با توزیع نسبتاً پراکنده وجود دارند که 8 عدد از آنها قدرت گرمایشی بسیار بالایی دارند. تعداد 31 کریدور، این جزایر را به یکدیگر متصل میکند که 10 عدد از پتانسیل افزایش دمای بسیار بالایی را دارند. بهعلاوه از نظر توزیع فضایی تکههای شبکه جزایر گرمایی شهر تهران، در نیمه غربی و جنوبی از تراکم بالاتری برخوردارند. تراکم بالای جزایر حرارتی در بخش غربی تهران، برنامهریزی برای مقابله با آن را سختتر و اثرگذاری این پدیده را افزایش میدهد. همچنین جزایر حرارتی بسیار متراکم واقع در جنوبغربی شهر تهران، سبب شناسایی راهروهای کوتاه حرارتی در این بخش شده است که این امر افزایش دما در این قسمت را توجیه میکند. از سوی دیگر نتایج نشان میدهد که بیشترین سهم را در شبکه جزایر حرارتی شهر تهران، عارضه هستهها دارند که این امر نشاندهنده بزرگی جزایر حرارتی و توزیع منطقهای آنها در منطقه مورد مطالعه است. نتیجهگیری: در این پژوهش به ویژگیهای ساختاری جزایر حرارتی منطقه مورد مطالعه و درجه اهمیت آنها توجه خاصی شده است. این چارچوب میتواند بهعنوان یک اقدام استراتژیک در جلوگیری از به هم پیوستن و گسترش جزایر حرارتی شهری مورد استفاده قرار گیرد و به افزایش بدون برنامه فضاهای سبز- آبی جهت کاهش دما در مناطق شهری پایان دهد. | ||
کلیدواژهها | ||
تحلیل الگوی فضایی مورفولوژیکی؛ جزیره حرارتی شهری؛ دمای سطح زمین؛ کریدورهای انتقال حرارت | ||
مراجع | ||
Aram, F., García, E.H., Solgi, E, & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5 (4), e01339. https://doi.org/10.1016/j.heliyon.2019.e01339
Bakhshi, A., rasouli, H, & Rahimi, N. (2022). Investigating the role of urban growth pattern in creating thermal islands in cities Case study: Sari .Urban Environmental Planning and Development, 6 (2), 77-94. https://sid.ir/paper/ 1021873/fa [in Persian]
Cai, Y., Chen, Y, & Tong, C. (2019). Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based on remote sensing data: a case study of Fuzhou City, China. Urban Forestry & Urban Greening, 41, 333-343. https://doi.org/10.1016/j.ufug.2019.04.012
Chander, G., Markham, B. L, & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM +, and EO-1 ALI sensors. Remote Sensing of Environment, 113 (5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007
Chen, H., Deng, Q., Zhou, Z., Ren, Z, & Shan, X. (2022). Influence of land cover change on spatio-temporal distribution of urban heat island —a case in Wuhan main urban area. Sustainable Cities and Society, 79, 103715. https://doi.org/10.1016/j.scs.2022.103715
Chen, Y., Yang, J., Yu, W., Ren, J., Xiao, X, & Cecilia Xia, J. (2023). Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustainable Cities and society, 89, 104374. https://doi.org/10.1016/j.scs.2022.104374
Coll, C, & Caselles, V. (1997). A split-window algorithm for land surface temperature from advanced very high-resolution radiometer data: validation and algorithm comparison. Journal of Geophys Research, 102 (D14), 16697–16713. https://doi.org/10.1029/97JD00929
Coutts, A.M., Tapper, N.J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography: Earth and Environment, 37 (1), 2–28. https://doi.org/10.1177/0309133312461032
Dai, L.u., Liu, Y, & Luo, X. (2021). Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake. Science of the Total Environmen, 754, 141868. https://doi.org/10.1016/j.scitotenv.2020.141868
Darvishi, S., rashidpour, M, & soleimani, K. (2019). Analysis of Land Use Role in the Formation of Thermal Islets of Marivan County Using Landsat Satellite Images. Geography and Development, 17(54), 143-162. https://gdij.usb.ac.ir/article_4361.html [in Persian]
Debbage, N, & Shepherd, J.M. (2015). The urban heat island effect and city contiguity. Computers, Environment and Urban System, 54, 181–194. https://doi.org/10.1016/j.compenvurbsys.2015.08.002
Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A.G., Mittal, N., Feliu, E, & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107-115. https://doi.org/10.1016/j.jenvman. 2014.07.025.
Dymond, J.R., Stephens, P.R., Newsome, P.F, & Wilde, R.H. (1992). Percentage vegetation cover of a degrading rangeland from SPOT. Remote Sensing, 13 (11), 1999–2007. https://doi.org/10.1080/01431169208904248.
Gao, J., Gong, J., Yang, J., Li, J, & Li, S., (2022). Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landscape and Urban Planning, 217, 104260. https://doi.org/10.1016/j.landurbplan.2021.104260.
Guha, S., Govil, H., Gill, N, & Dey, A. (2021). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quaternary International, 575, 249-258. https://doi.org/10.1016/j.quaint.2020.06.041.
Hami, A., Abdi, B., Zarehaghi, D, & Maulan, S. B. (2019). Assessing the thermal comfort effects of green spaces: a systematic review of methods, parameters, and plants’ attributes. Sustainable Cities and Society, 49, 101634. https://doi.org/10.1016/j.scs.2019.101634
He, B.J., Zhao, D.X., Dong, X., Xiong, K., Feng, C., Qi, Q.L., Darko, A., Sharifi, A, & Pathak, M. (2022). Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing. China. Sustainable Cities and Society, 79, 103685. https://doi.org/10.1016/ j.scs.2022.103685
Herrera, L.P., Sabatino, M.C., Jaimes, F.R, & Saura, S. (2017). Landscape connectivity and the role of small habitat patches as stepping stones: an assessment of the grassland biome in South America. Biodivers Conservation, 26 (14), 3465–3479. https://doi.org/10.1007/s10531-017-1416-7.
Hong, T., Huang, X., Chen, G., Yang, Y, & Chen, L. (2023). Exploring the spatiotemporal relationship between green infrastructure and urban heat island under multi‐source remote sensing imagery: A case study of Fuzhou City. CAAI Transactions on Intelligence Technology, 8(4), 1337-1349. https://doi.org/10.1049/cit2.12272.
Hu, C.G, & Li, H. (2022). Reverse thinking: The logical system research method of urban thermal safety pattern construction, evaluation, and optimization. Remote Sensing, 14 (23), 6036. https://doi.org/10.3390/rs14236036.
Isazade, V., asiabi, S, & isazadeh, E. (2021). Surface temperature monitoring using Landsat 8 images and single channel and separate window algorithms (Study area: Dezful city). Geography and Human Relationships, 3(3), 8-25. https://www.gahr.ir/article_120954.html [in Persian]
Jafarzadeh, J, & Hassanitabar, S. M. (2022). Application of remote sensing in extracting ground surface temperature and examining its compliance with land use patterns. Remote Sensing and GIS Applications in Environmental Sciences, 1(1), 51-66. https://rsgi.tabrizu.ac.ir/article_14398.html [in Persian]
Jafarzadeh, J, & Hassanitabar, S. M. (2022). Application of remote sensing in extracting ground surface temperature and examining its compliance with land use patterns. Remote Sensing and GIS Applications in Environmental Sciences, 1(1), 51-66. http:// https://rsgi.tabrizu.ac.ir/article_14398.html [in Persian]
Juan, Y., Feng, X., Jia, L., Xudong, A., & Yongqiang, J. (2014). The reverberation suppression in wideband diver detection sonar. In 2014 Oceans-St. John's, 1-4.https://ieeexplore.ieee.org/abstract/document/7003121
Jim´enez-Mu˜noz, J.C., Sobrino, J.A., Skokovi´c, D., Mattar, C, & Crist´obal, L. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11 (10), 1840–1843. https://ieeexplore.ieee.org/document/6784508
Kant, Y, & Badarinath, K.V.S. (1998). A method for estimating the land surface temperature from satellite data using emissivity derived from vegetation index. Research communications, 75(2), 139–145. https://www.jstor.org/stable/ 24100536.
Ke, X.L., Men, H.L., Zhou, T., Li, Z.Y, & Zhu, F.K. (2021). Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban for. Urban Green, 62, 127159. https://doi.org/10.1016/j.ufug.2021.127159.
Lai, D., Liu, Y., Liao, M, & Yu, B. (2023). Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Climate, 47, 101398. https://doi.org/10.1016/j.uclim.2022.101398.
Lin, J., Huang, C., Wen, Y, & Liu, X. (2021). An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators. Ecological Indicator, 130, 108138. https://doi.org/10.1016/j.ecolind.2021.108138
Lin, J., Wei, K, & Guan, Z. (2024). Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Climate, 53, 101764. https://doi.org/10.1016/j.uclim.2023.101764
Manoli, G., Fatichi, S., Schlapfer, M., Yu, K.L., Crowther, T.W., Meili, N., Burlando, P., Katul, G.G, & Zeid, E.B. (2019). Magnitude of urban heat islands largely explained by climate and population. Nature, 573 (7772), 55–60. https://doi.org/10.1038/s41586-019-1512-9
Masoudi, M., Tan, P.Y, & Liew, S.C. (2019). Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecolohical Indicator, 98, 200–213. https://doi.org/ 10.1016/j.ecolind.2018.09.058
Mortazavi Asl, S K., Saeeidi Rezvani, N, Rezaei, M. (2021). The Effect of Land Use on the Spatial Distribution of Cool Islands in Tehran. JGSMA, 2 (2), 33-50. http://gsma.lu.ac.ir/article-1-152-fa.html. [in Persian]
Mortazavi Asl, S.K., Saeeidi Rezvani, N, & Rezaei, M. (2021). The Effect of Land Use on the Spatial Distribution of Cool Islands in Tehran. Journal of the Geographical Studies of Mountainous Areas, 2 (2), 33-50. doi:10.52547/gsma. 2.2.31 [in Persian]
Peng, L.L.H., Jiang, Z., Yang, X., He, Y., Xu, T, & Chen, S.S. (2020). Cooling effects of blockscale facade greening and their relationship with urban form. Building and Environment, 169, 106552. https://doi.org/10.1016/j.buildenv. 2019.106552
Qian, Y., Chakraborty, T.C., Li, J.F., Li, D., He, C.L., Sarangi, C., Chen, F., Yang, X.C, & Leung, L.R. (2022). Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Advances in Atmospheris science, 39 (6), 819–860. https://doi.org/10.1007/s00376-021-1371-9
Qiu, J., Li, X, & Qian, W. (2023). Optimizing the spatial pattern of the cold island to mitigate the urban heat island effect. Ecological Indicators, 154, 110550. https://doi.org/10.1016/j.ecolind.2023.110550
Rongali, G., Keshari, A. K., Gosain, A. K, & Khosa, R. (2018). Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis, 2, 1-19. https://doi.org/10.1007/s41651-018-0021-y
Sacks, W.J., Cook, B.I., Buenning, N., Levis, S, Helkowski, J.H. (2009). Effects of global irrigation on the near-surface climate. Climate Dynamic. 33 (2–3), 159–175. https://doi.org/10.1007/s00382-008-0445-z
Sadat, M., Salehi, E., Amiri, M. J, & Ehsani, A. H. (2021). Optimization of Landscape Structure Based on Ecological Network Analysis and Graph theory. Journal of Environmental Studies, 46(4), 625-644. https://jes.ut.ac.ir/ article_83012.html?lang=en. [in Persian]
Sadeghinia, A., Alijani, B, & Zeaieanfirouzabadi, P. (2013). Analysis of Spatial - Temporal Structure of the Urban Heat Island in Tehran through Remote Sensing and Geographical Information System. Journal of Geography and Environmental Hazards, 1(4), 1-17. https://geoeh.um.ac.ir/article_25985.html. [in Persian]
Sahani, N. (2021). Assessment of spatio-temporal changes of land surface temperature (LST) in Kanchenjunga Biosphere Reserve (KBR), India using Landsat satellite image and single channel algorithm. Remote Sensing Applications: Society and Environment, 24, 100659. https://doi.org/10.1016/j.rsase.2021.100659.
Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 207, 109482. https://doi.org/10.1016/j.enbuild.2019.109482.
Santamouris, M., 2014. On the energy impact of urban heat island and global warming on buildings. Energy Build, 82, 100–113. https://doi.org/10.1016/j.enbuild.2014.07.022.
Shakiba, A., Ziaeeyan Firoozabadi, P., Ashoorloo, D, &Namdari,S. (2009). Analysis of Relationship between Land use/cover and Urban Heat Island, Using ETM+. Iranian Journal of Remote Sensing & GIS, 1(1), 39-58. https://gisj.sbu.ac.ir/article_94232.html?lang=en. [in Persian]
Sheng, Y.L., Liu, X.P., Yang, X.C., Xin, Q.C., Deng, C.B, & Li, X. (2017). Quantifying the spatial and temporal relationship between air and land surface temperatures of different land-cover types in Southeastern China. Interntional Journal of Remote Sensing, 38 (4), 1114–1136. https://doi.org/10.1080/01431161.2017.1280629.
Sobrino, J.A., Jim´enez-Mu˜noz, J.C, & Paolini, L. (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sensing of Environment, 90 (4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003.
Soleimani Vosta Kolaei, F, & Akhoondzadeh, M. (2018). A comparison of four methods for extracting Land Surface Emissivity and Temperature in the Thermal Infrared Hyperspectral Data. Earth Observation and Geomatics Engineering, 2(1), 56-63. https://eoge.ut.ac.ir/article_66951.html.
Sun, D.Q., Hu, C.G., Wang, Y., Wang, Z.Y, & Zhang, J.X. (2021). Examining Spatio- Temporal Characteristics of Urban Heat Islands and Factors Driving Them in Hangzhou, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8316– 8325. https://www.researchgate.net/publication/353993777_Examining_ Spatio Temporal_ Characteristics_ of_ Urban_ Heat_ Islands_and_Factors_Driving_Them_in_Hangzhou_Chia
Tian, P., Li, J.L., Cao, L.D., Pu, R.L., Wang, Z.Y., Zhang, H.T., Chen, H.L, & Gong, H.B. (2021). Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustainable Cities and Society, 74, 103208. https://doi.org/10.1016/j.scs.2021.103208.
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M, & Kieu, H.V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogramm. Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001.
Wei, Q., Halike, A., Yao, K., Chen, L, & Balati, M. (2022). Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecological Indicatores, 138, 108857. https://doi.org/10.1016/ j.ecolind.2022.108857.
Xiang, Y., Cen, Q.Y., Peng, C.C., Huang, C.B., Wu, C.G., Teng, M.J, & Zhou, Z.X. (2023). Surface urban heat island mitigation network construction utilizing source-sink theory and local climate zones. Building and Environment, 243, 110717. https://doi.org/10.1016/j.buildenv.2023.110717
Yang, J., Sun, J., Ge, Q, & Li, X. (2017). Assessing the impacts of urbanization-associated green space on urban land surface temperature: a case study of Dalian, China. Urban Forestry & Urban Greening, 22, 1-10. https://doi.org/ 10.1016/j.ufug.2017.01.002.
Yu, Y., Duan, S., Li, Z., Chang, S., Xing, Z., Leng, P, & Gao, M. (2021). Interannual spatiotemporal variations of land surface temperature in China from 2003 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1783–1795. https://doi.org/10.1109/ jstars.2020.3048823
Yu, Z.W., Guo, X.Y., Jørgensen, G, & Vejre, H. (2017). How can urban green spaces be planned for climate adaptation in subtropical cities? Ecological Indicators, 82, 152–162. https://doi.org/10.1016/j.ecolind.2017.07.002.
Yu, Z.W., Zhang, J.G., & Yang, G.Y. (2021). How to build a heat network to alleviate surface heat island effect?. Sustainable Cities and Society, 74, 103135. https://doi.org/10.1016/j.scs.2021.103135
Zandi, R., Karami, M., & Taheri, J. (2020). The role of land use changes in spatial form of heat islands in Mashhad city. Physical Social Planning, 6(4), 93-104. https://psp.journals.pnu.ac.ir/article_6590.html?lang=en. [in Persian]
Zandi, R., Karami, M, & Taheri, J. (2020). The role of land use changes in spatial form of heat islands in Mashhad city. Physical Social Planning, 6(4), 93-104. https://sid.ir/paper/378302/fa. [in Persian]
Zanter, K. (2019). USGS Landsat 8 (L8) Data Users Handbook. https://prd-wret.s3-us-west-2.amazonaws.com/assets/ palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0. pdf
Zhang, W., Li, Y., Zheng, C, & Zhu, Y. (2023). Surface urban heat island effect and its driving factors for all the cities in China: Based on a new batch processing method. Ecolgical Indicators, 146, 109818. https://doi.org/10.1016/ j.ecolind.2022.109818.
Zhao, Z., Li, W., Zhang, J, & Zheng, Y. (2024). Constructing an urban heat island network based on connectivity perspective: A case study of Harbin, China. Ecological Indicators, 159, 111665. https://doi.org/10.1016/j.ecolind. 2024.111665.
Zhou, D.C., Bonafoni, S., Zhang, L.X, & Wang, R.H. (2018). Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Scince of Total Environment, 628–629, 415-429. https://doi.org/ 10.1016/j.scitotenv.2018.02.074
Zou, Z.D., Yan, C.H., Yu, L.Y., Jiang, X.C.H., Ding, J.S., Qin, L.J., Wang, B, & Qiu, G.Y. (2021). Impacts of land use/ land cover types on interactions between urban heat island effects and heat waves. Building and Environment, 204, 108138. https://www.sciencedirect.com/science/article/abs/pii/S0360132321005394 | ||
آمار تعداد مشاهده مقاله: 51 تعداد دریافت فایل اصل مقاله: 47 |