
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,839 |
تعداد مشاهده مقاله | 131,888,376 |
تعداد دریافت فایل اصل مقاله | 103,544,316 |
تحلیل پارامترهای مؤثر بر کاهش میزان مصرف انرژی و کاهش انتشار کربن در طراحی بام سبز در شهر تهران | ||
نشریه هنرهای زیبا: معماری و شهرسازی | ||
دوره 29، شماره 4، اسفند 1403، صفحه 59-74 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfaup.2025.388828.673043 | ||
نویسندگان | ||
زهرا صفی جهقی1؛ مهدیه آبروش* 2 | ||
1کارشناس ارشد، گروه فناوری معماری، دانشکده معماری،دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران. | ||
2استادیار گروه فناوری معماری، دانشکده معماری، دانشکدگان هنرهای زیبا، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
بام سبز بهعنوان یک راهحل پایدار برای کاهش مصرف انرژی و کاهش انتشار گاز دیاکسیدکربن در محیطهای شهری شناخته میشود. این پژوهش از نوع کاربردی–تحلیلی و مبتنی بر شبیهسازی است که به بهینهسازی عملکرد بام سبز در تهران با تمرکز بر ارزیابی ضخامت بستر، کاهش ردپای کربن و انتخاب گیاهان مناسب برای شرایط اقلیمی این منطقه پرداخته است. در مجموع 133 سناریوی شبیهسازی برای تحلیل ویژگیهای گیاهی نظیر شاخص سطح برگ، بازتابپذیری و انتشار برگ انجام شد. این شبیهسازیها چارچوبی برای انتخاب بهترین گونههای گیاهی که بهویژه برای شرایط اقلیمی تهران شامل دماهای بالا، خشکی طولانیمدت و زمستان سرد مناسب هستند، ایجاد کرده و در نهایت هشت گونه بهینه شناسایی شدند. همچنین، در این پژوهش به بررسی مکانیسمهای مستقیم و غیرمستقیم کاهش ردپای کربن، از جمله جذب دی اکسیدکربن توسط گیاهان و کاهش نیاز به انرژی برای گرمایش و سرمایش پرداخته شده است. تأثیر ضخامت بستر بر عملکرد بام سبز و بهبود بازده انرژی نیز بررسی گردید. نتایج نشان میدهند که در دورههای گرم و سرد، صرفهجویی در بار سرمایی و گرمایی تا 25 درصد امکانپذیر است. در دوره سرد، گیاهانی با شاخص سطح برگ کمتر نسبت به دوره گرم، عملکرد بهتری در حفظ گرمای داخلی ساختمان داشتهاند. بهطور کلی، هشت گیاه انتخابی میتوانند بین 19 تا 24 درصد از مصرف انرژی سالانه را کاهش دهند. | ||
کلیدواژهها | ||
بام سبز؛ کاهش میزان مصرف انرژی؛ کاهش انتشار کربن؛ عملکرد حرارتی | ||
مراجع | ||
Abdalazeem, M. E., Hassan, H., Asawa, T., & Mahmoud, H. (2024). Enhancing energy efficiency in hot climate buildings through integrated photovoltaic panels and green roofs: An experimental study. Solar Energy. https://www.sciencedirect.com/science/article/pii/S0038092X24001130 Abuseif, M., Jamei, E., & Chau, H. W. (2023). Simulation-based study on the role of green roof settings on energy demand reduction in seven Australian climate zones. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778823001688 Balvedi, N., & Giglio, T. (2023). Influence of green roof systems on the energy performance of buildings and their surroundings. Journal of Building Engineering. https://www.sciencedirect.com/science/article/pii/S2352710223006095 Barrio, E. D. (1998). Analysis of the green roofs cooling potential in buildings. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778897000297 Cao, J. J., Hu, S., Dong, Q., Liu, L. J., & Wang, Z. L. (2019). Green roof cooling contributed by plant species with different photosynthetic strategies. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778819300490 scone, S., Coma, J., Gagliano, A., & Pérez, G. (2019). The evapotranspiration process in green roofs: A review. Building and Environment. https://www.sciencedirect.com/science/article/pii/S0360132318306425 Coma, J., Gracia, A. de, Chàfer, M., Pérez, G., & ... (2017). Thermal characterization of different substrates under dried conditions for extensive green roofs. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778817308642 Domanicky, J., & Vranay, F. (2023). The Impact of Vegetative Roof on Heat Energy Demand. International Conference Current Issues of Civil …. https://doi.org/10.1007/978-3-031-44955-0_11 Ferrante, P., Gennusa, M. L., Peri, G., Rizzo, G., & ... (2016). Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs’ system. Energy. https://www.sciencedirect.com/science/article/pii/S0360544216310106 Fioretti, R., Palla, A., Lanza, L. G., & Principi, P. (2010). Green roof energy and water related performance in the Mediterranean climate. Building and Environment. https://www.sciencedirect.com/science/article/pii/S0360132310000806 Gargari, C., Bibbiani, C., Fantozzi, F., & ... (2016). Simulation of the thermal behaviour of a building retrofitted with a green roof: Optimization of energy efficiency with reference to italian climatic zones. Agriculture and Agricultural …. https://www.sciencedirect.com/science/article/pii/S2210784316300857 Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment. https://www.ingentaconnect.com/content/alex/benv/2007/00000033/00000001/art00008 Granata, M. U., Bracco, F., & Catoni, R. (2020). Carbon dioxide sequestration capability of hazelnut orchards: Daily and seasonal trends. Energy, Ecology and Environment. https://doi.org/10.1007/s40974-020-00161-7 He, Y., Yu, H., Ozaki, A., & Dong, N. (2020). Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/pii/S0959652620322526 Hellies, M., Deidda, R., & Viola, F. (2018). Retention performances of green roofs worldwide at different time scales. Land Degradation & …. https://doi.org/10.1002/ldr.2947 Heusinger, J., & Weber, S. (2017a). Extensive green roof CO2 exchange and its seasonal variation quantified by eddy covariance measurements. Science of the Total Environment. https://www.sciencedirect.com/science/article/pii/S0048969717317552 Heusinger, J., & Weber, S. (2017b). Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements. Science of the Total Environment. https://www.sciencedirect.com/science/article/pii/S0048969716323567 Jamei, E., Chau, H. W., Seyedmahmoudian, M., & ... (2021). Review on the cooling potential of green roofs in different climates. Science of the Total …. https://www.sciencedirect.com/science/article/pii/S0048969721034781 Jim, C. Y., & Tsang, S. W. (2011a). Biophysical properties and thermal performance of an intensive green roof. Building and Environment. https://www.sciencedirect.com/science/article/pii/S0360132310003653 Jim, C. Y., & Tsang, S. W. (2011b). Ecological energetics of tropical intensive green roof. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778811002672 Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S., Dieckmann, U., & ... (2022). Towards a unified theory of plant photosynthesis and hydraulics. In Nature Plants. nature.com. https://www.nature.com/articles/s41477-022-01244-5 Konopka, J., Heusinger, J., & ... (2021). Extensive urban green roof shows consistent annual net uptake of carbon as documented by 5 years of eddy‐covariance flux measurements. Journal of Geophysical …. https://doi.org/10.1029/2020JG005879 López-Silva, D. V., Méndez-Alonzo, R., & ... (2022). Experimental comparison of two extensive green roof designs in Northwest Mexico. Building and …. https://www.sciencedirect.com/science/article/pii/S0360132322009520 Mousavi, S. N., Gheibi, M., Wacławek, S., & Behzadian, K. (2023). A novel smart framework for optimal design of green roofs in buildings conforming with energy conservation and thermal comfort. In Energy and Buildings. Elsevier. https://www.sciencedirect.com/science/article/pii/S0378778823003419 Nguyen, C. N., Chau, H. W., Kumar, A., Chakraborty, A., & ... (2024). Biochar Amendment in Green Roof Substrate: A Comprehensive Review of the Benefits, Performance, and Challenges. In Applied Sciences. mdpi.com. https://www.mdpi.com/2076-3417/14/16/7421 Perillo, V. L., Brendel, A. S., Ferrelli, F., Gutiérrez, A., Vitale, A. J., & ... (2023). CO2 flux dynamics of exotic and native species in an extensive green roof simulator with hydric deficit. Urban Climate. https://www.sciencedirect.com/science/article/pii/S221209552300161X Piccardo, C., Dodoo, A., Gustavsson, L., & Tettey, U. (2020). Retrofitting with different building materials: Life-cycle primary energy implications. Energy. https://www.sciencedirect.com/science/article/pii/S0360544219323436 Pique, L., Blanchet, P., & Breton, C. (2023). Global warming potential comparison between green and conventional roofs in cold climate using life cycle assessment. Journal of Cleaner Production. https://www.sciencedirect.com/science/article/pii/S0959652623024721 Robbiati, F. O., Natalia, C., Gustavo, B., Gustavo, O., & ... (2023). Vegetated roofs as a nature-based solution to mitigate climate change in a semiarid city. In Nature-Based …. Elsevier. https://www.sciencedirect.com/science/article/pii/S2772411523000216 Rushton, K. R., Eilers, V. H. M., & Carter, R. C. (2006). Improved soil moisture balance methodology for recharge estimation. Journal of Hydrology. https://www.sciencedirect.com/science/article/pii/S0022169405003185 Seyedabadi, M. R., Eicker, U., & Karimi, S. (2021). Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint. In Environmental Challenges. Elsevier. https://www.sciencedirect.com/science/article/pii/S2667010021000986 Shafique, M., Xue, X., & Luo, X. (2020). An overview of carbon sequestration of green roofs in urban areas. Urban Forestry &Urban Greening. https://www.sciencedirect.com/science/article/pii/S1618866719303668 Shi, D., Gao, Y., Zeng, P., Li, B., Shen, P., & Zhuang, C. (2022). Climate adaptive optimization of green roofs and natural night ventilation for lifespan energy performance improvement in office buildings. Building and Environment. https://www.sciencedirect.com/science/article/pii/S0360132322007351 Tan, T., Kong, F., Yin, H., Cook, L. M., Middel, A., & ... (2023). Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods. … and Sustainable Energy …. https://www.sciencedirect.com/science/article/pii/S1364032123002691 Whittinghill, L. J., Rowe, D. B., Schutzki, R., & ... (2014). Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landscape and Urban …. https://www.sciencedirect.com/science/article/pii/S0169204613002296 Wong, N. H., Cheong, D. K. W., Yan, H., Soh, J., Ong, C. L., & ... (2003). The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy and …. https://www.sciencedirect.com/science/article/pii/S0378778802001081 Wong, N. H., Tay, S. F., Wong, R., Ong, C. L., & Sia, A. (2003). Life cycle cost analysis of rooftop gardens in Singapore. Building and Environment. https://www.sciencedirect.com/science/article/pii/S0360132302001312 Yaghoobian, N., & Srebric, J. (2015). Influence of plant coverage on the total green roof energy balance and building energy consumption. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S037877881530027X Yang, S., Kong, F., Yin, H., Zhang, N., Tan, T., & ... (2023). Carbon dioxide reduction from an intensive green roof through carbon flux observations and energy consumption simulations. Sustainable Cities and …. https://www.sciencedirect.com/science/article/pii/S2210670723005243 Zahedi, R., Daneshgar, S., Farahani, O. N., & Aslani, A. (2023). Thermal analysis model of a building equipped with green roof and its energy optimization. In Nature-Based Solutions. Elsevier. https://www.sciencedirect.com/science/article/pii/S2772411523000058 Zheng, X., Yang, Z., Yang, J., Tang, M., & Feng, C. (2022). An experimental study on the thermal and energy performance of self-sustaining green roofs under severe drought conditions in summer. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778822001244 Zhou, L. W., Wang, Q., Li, Y., Liu, M., & Wang, R. Z. (2018). Green roof simulation with a seasonally variable leaf area index. Energy and Buildings. https://www.sciencedirect.com/science/article/pii/S0378778817325409 Ziogou, I., Michopoulos, A., Voulgari, V., & ... (2017). Energy, environmental and economic assessment of electricity savings from the operation of green roofs in urban office buildings of a warm Mediterranean region. Journal of Cleaner …. https://www.sciencedirect.com/science/article/pii/S0959652617319601 Zonato, A., Martilli, A., Gutierrez, E., Chen, F., & ... (2021). Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption. Journal of …. https://doi.org/10.1029/2021JD035002 | ||
آمار تعداد مشاهده مقاله: 68 تعداد دریافت فایل اصل مقاله: 39 |