- Kaluza, J., et al., Properties of an optical fluid filter: Theoretical evaluations and measurement results. Le Journal de Physique IV, 1999. 09(PR3): p. Pr3–655–Pr3–660. https://doi.org/10.1051/jp4:19993104
- Otanicar, T.P., P.E. Phelan, and J.S. Golden, Optical properties of liquids for direct absorption solar thermal energy systems. Solar Energy, 2009. 83(7): p. 969–977. https://doi.org/10.1016/j.solener.2008.12.009
- Rosa-Clot, M., P. Rosa-Clot, and G.M. Tina, TESPI: Thermal Electric Solar Panel Integration. Solar Energy, 2011. 85(10): p. 2433–2442. https://doi.org/10.1016/j.solener.2011.07.003
- Joshi, S.S. and A.S. Dhoble, Experimental investigation of solar photovoltaic thermal system using water, coconut oil and silicone oil as spectrum filters. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017. 39(8): p. 3227–3236. https://doi.org/10.1007/s40430-017-0802-0
- Mohaghegh, M.R., Nanofluids Applications in Solar Energy Systems: A Review. Journal of Solar Energy Research, 2018. 3(1): p. 57–65.
- Shojaeefard, M.H., N.B. Sakran, and M. Mazidi Sharfabadi, Long-term Evaluation and Analysis of a Residential Building Integrated with PVT/ water and PVT Al2O3/Water Systems in Basra, South of Iraq. Journal of Solar Energy Research, 2023. 8(4): p. 1691–1700. DOI: 10.22059/jser.2023.369025.1362
- Jackson, E.D., Areas for Improvement of the Semiconductor Solar Energy Converter, in Conference on Solar Energy: The Scientific Basis. 1955: University of Arizona, Tucson, AZ.
- Joshi, S.S. and A.S. Dhoble, Use of Silicone Oil and Coconut Oil as Liquid Spectrum Filters for BSPVT: With Emphasis on Degradation of Liquids by Sunlight. Journal of Solar Energy Engineering, 2017. 140(1). https://doi.org/10.1115/1.4038052
- Maiti, S., K. Vyas, and P.K. Ghosh, Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling. Solar Energy, 2010. 84(8): p. 1439–1444. https://doi.org/10.1016/j.solener.2010.05.005
- Taylor, R.A., et al., Feasibility of nanofluid-based optical filters. Applied Optics, 2013. 52(7): p. 1413–1422. https://doi.org/10.1364/AO.52.001413
- Huang, H., et al., Photovoltaic–thermal solar energy collectors based on optical tubes. Solar Energy, 2011. 85(3): p. 450–454. https://doi.org/10.1016/j.solener.2010.12.011
- Joshi, S.S., A.S. Dhoble, and P.R. Jiwanapurkar, Investigations of Different Liquid Based Spectrum Beam Splitters for Combined Solar Photovoltaic Thermal Systems. Journal of Solar Energy Engineering, 2016. 138(2). https://doi.org/10.1115/1.4032352
- Pushparaj R. Jiwanapurkar, H.A.B.a.B.R., Fluid based solar spectral beam splitters for hybrid photovoltaic thermal systems: a review. International Journal of Renewable Energy Technology, 2023. 14(3): p. 241–258. https://doi.org/10.1504/IJRET.2023.132982
- Vijayaraghavan, S., S. Ganapathisubbu, and C. Santosh Kumar, Performance analysis of a spectrally selective concentrating direct absorption collector. Solar Energy, 2013. 97: p. 418–425. https://doi.org/10.1016/j.solener.2013.08.008
- Al-Shohani, W.A.M., R. Al-Dadah, and S. Mahmoud, Reducing the thermal load of a photovoltaic module through an optical water filter. Applied Thermal Engineering, 2016. 109: p. 475–486. https://doi.org/10.1016/j.applthermaleng.2016.08.107
- Al-Shohani, W.A.M., et al., Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module. Energy Conversion and Management, 2016. 111: p. 431–442. https://doi.org/10.1016/j.enconman.2015.12.065
- Ramdani, H. and C. Ould-Lahoucine, Study on the overall energy and exergy performances of a novel water-based hybrid photovoltaic-thermal solar collector. Energy Conversion and Management, 2020. 222: p. 113238. https://doi.org/10.1016/j.enconman.2020.113238
- Chemisana, D., et al., Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications. Renewable Energy, 2018. 123: p. 263–272. https://doi.org/10.1016/j.renene.2018.02.018
- Looser, R., M. Vivar, and V. Everett, Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications. Applied Energy, 2014. 113: p. 1496–1511. https://doi.org/10.1016/j.apenergy.2013.09.001
- Han, X., et al., Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells. Renewable Energy, 2019. 131: p. 938–945. https://doi.org/10.1016/j.renene.2018.07.125
- Cui, Y. and Q. Zhu. Study of Photovoltaic/Thermal Systems with MgO-Water Nanofluids Flowing over Silicon Solar Cells. in 2012 Asia-Pacific Power and Energy Engineering Conference. 2012. DOI: 10.1109/APPEEC.2012.6307203
- Saroha, S., et al., Theoretical Analysis and Testing of Nanofluids-Based Solar Photovoltaic/Thermal Hybrid Collector. Journal of Heat Transfer, 2015. 137(9). https://doi.org/10.1115/1.4030228
- Jing, D., et al., Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Solar Energy, 2015. 112: p. 30–40. https://doi.org/10.1016/j.solener.2014.11.008
- An, W., et al., Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Applied Energy, 2016. 184: p. 197–206. https://doi.org/10.1016/j.apenergy.2016.10.004
- DeJarnette, D., et al., Nanoparticle enhanced spectral filtration of insolation from trough concentrators. Solar Energy Materials and Solar Cells, 2016. 149: p. 145–153. https://doi.org/10.1016/j.solmat.2016.01.022
- Crisostomo, F., et al., A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energy, 2017. 193: p. 1–14. https://doi.org/10.1016/j.apenergy.2017.02.028
- Jin, J. and D. Jing, A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Solar Energy, 2017. 155: p. 51–61. https://doi.org/10.1016/j.solener.2017.06.030
- Otanicar, T., et al., Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures. Applied Energy, 2018. 228: p. 1531–1539. https://doi.org/10.1016/j.apenergy.2018.07.055
- Han, X., et al., Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Solar Energy, 2019. 177: p. 387–394. https://doi.org/10.1016/j.solener.2018.11.037
- Hjerrild, N.E., et al., Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Solar Energy Materials and Solar Cells, 2016. 147: p. 281–287. https://doi.org/10.1016/j.solmat.2015.12.010
- Hjerrild, N.E., et al., Experimental Results for Tailored Spectrum Splitting Metallic Nanofluids for c-Si, GaAs, and Ge Solar Cells. IEEE Journal of Photovoltaics, 2019. 9(2): p. 385–390. DOI: 10.1109/JPHOTOV.2018.2883626
- Li, H., et al., Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications. Applied Energy, 2019. 236: p. 117–126. https://doi.org/10.1016/j.apenergy.2018.11.085
- Huaxu, L., et al., Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy, 2020. 194: p. 116913. https://doi.org/10.1016/j.energy.2020.116913
- Huang, J., et al., Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems. Energy, 2021. 215: p. 119111. https://doi.org/10.1016/j.energy.2020.119111
- Abdelrazik, A.S., R. Saidur, and F.A. Al-Sulaiman, Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter. Energy, 2021. 215: p. 119172. https://doi.org/10.1016/j.energy.2020.119172
- Meibo Xing, Y.J., Hongbing Chen,, Tunable electrical/thermal output performance of the PV/T system with magnetic nanofluid based spectral beam filter,. Energy Conversion and Management,, 2024. Vol 319(118951). https://doi.org/10.1016/j.enconman.2024.118951
- Taylor, R., Otanicar, Nanofluid-based optical filter optimization for PV/T systems. Light Sci Appl, 2012. 1. https://doi.org/10.1038/lsa.2012.34
- Lu, P.-J., et al., Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. Journal of Food and Drug Analysis, 2015. 23(3): p. 587–594. https://doi.org/10.1016/j.jfda.2015.02.009
- Smijs, T.G. and S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl, 2011. 4: p. 95–112. https://doi.org/10.2147/NSA.S19419
- Linxi Wang, J.Y., Interface Science and Technology, ed. L.Z. Jiaguo Yu, Linxi Wang, Bicheng Zhu,. Vol. 35. 2023, Elsevier. https://doi.org/10.1016/B978-0-443-18786-5.00002-0
- Barthwal, M. and D. Rakshit, Selective transmission and absorption in oxide-based nanofluid optical filters for PVT collectors. Solar Energy Advances, 2024. 4: p. 100078. https://doi.org/10.1016/j.seja.2024.100078
- Rashid, A.R.A. and H.K. Tazri, Optical Properties of ZnO, TiO2 and ZnO:TiO2 Composite Films. Nano Hybrids and Composites, 2021. 31: p. 25–33. https://doi.org/10.4028/www.scientific.net/NHC.31.25
|