
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,833 |
تعداد مشاهده مقاله | 131,770,285 |
تعداد دریافت فایل اصل مقاله | 103,494,545 |
Comparative Study of Non-Isothermal Poiseuille Flow of Couple Stress Fluid in Reynolds Model Between Inclined Plates Using Two Homotopy-Based Methods | ||
Journal of Computational Applied Mechanics | ||
دوره 56، شماره 3، مهر 2025، صفحه 587-601 اصل مقاله (666.56 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2025.392399.1415 | ||
نویسندگان | ||
Muhammad Farooq1؛ Rashid Nawaz2؛ Alamgeer Khan1؛ Faridoon Shahid1؛ Ilker Ozsahin3؛ Berna Uzun3، 4؛ Hijaz Ahmad* 3، 5 | ||
1Department of Mathematics, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan | ||
2UniSa STEM, University of South Australia | ||
3Operational Research Center in Healthcare, Near East University, 99138, Nicosia/TRNC Mersin 10, Turkey | ||
4Department of Mathematics, Faculty of Arts and Sciences, Near East University, 99138, Nicosia/TRNC Mersin 10, Turkey | ||
5Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea | ||
چکیده | ||
This work examines the Poiseuille flow of the Reynolds model's non-isothermal couple stress fluid between heated inclined plates. Using the Optimal Homotopy Asymptotic Method with DJ Polynomials (OHAM-DJ) and the Asymptotic Homotopy Perturbation method (AHPM), the strongly non-linear system of ordinary differential equations have been studied. The AHPM and OHAM-DJ have been used to approximate the results for the velocity profile, shear stress, temperature distributions, average velocity and volume flux. It is important to note that the outcomes obtained from these two methods closely resemble one another. In addition to being shown graphically, the impact of various factors on the flow problem have been investigated mathematically. | ||
کلیدواژهها | ||
Couple Stress Fluid, Optimal Homotopy Asymptotic Method, Asymptotic Homotopy, Perturbation method؛ Poiseuille Flow؛ Reynolds Model, Non-isothermal Poiseuille flow, Inclined plates | ||
مراجع | ||
[1] C. Fetecau, C. Fetecau, Decay of a potential vortex in an Oldroyd-B fluid, International Journal of Engineering Science, Vol. 43, No. 3-4, pp. 340-351, 2005.
[2] C.-I. Chen, C.-K. Chen, Y.-T. Yang, Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions, Heat and Mass transfer, Vol. 40, pp. 203-209, 2004.
[3] W. Tan, T. Masuoka, Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary, International Journal of Non-Linear Mechanics, Vol. 40, No. 4, pp. 515-522, 2005/05/01/, 2005.
[4] V. K. Stokes, 2012, Theories of fluids with microstructure: An introduction, Springer Science & Business Media,
[5] M. Devakar, T. Iyengar, Run up flow of a couple stress fluid between parallel plates, Nonlinear Analysis: Modelling and Control, Vol. 15, No. 1, pp. 29-37, 2010.
[6] S. Asghar, M. R. Mohyuddin, T. Hayat, Unsteady flow of a third-grade fluid in the case of suction, Mathematical and computer modelling, Vol. 38, No. 1-2, pp. 201-208, 2003.
[7] T. Hayat, M. Khan, M. Ayub, On the explicit analytic solutions of an Oldroyd 6-constant fluid, International Journal of Engineering Science, Vol. 42, No. 2, pp. 123-135, 2004.
[8] T. Hayat, R. Ellahi, F. Mahomed, Exact solutions for Couette and Poiseuille flows for fourth grade fluids, Acta Mechanica, Vol. 188, No. 1, pp. 69-78, 2007.
[9] A. Siddiqui, M. Ahmed, S. Islam, Q. Ghori, Homotopy analysis of Couette and Poiseuille flows for fourth grade fluids, Acta mechanica, Vol. 180, pp. 117-132, 2005.
[10] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, Journal of mathematical analysis and applications, Vol. 316, No. 2, pp. 753-763, 2006.
[11] S. Bhalekar, V. Daftardar-Gejji, Convergence of the new iterative method, International journal of differential equations, Vol. 2011, No. 1, pp. 989065, 2011.
[12] Z. Shah, R. Nawaz, S. Shah, S. Shah, M. Shah, Use of the Daftardar–Jafari polynomials in optimal homotopy asymptotic method for the solution of linear and nonlinear Klein–Gordon equations, Journal of Applied Environmental and Biological Sciences, Vol. 6, pp. 71-81, 2016.
[13] S. Islam, C. Zhou, Exact solutions for two dimensional flows of couple stress fluids, Zeitschrift für angewandte Mathematik und Physik, Vol. 58, No. 6, pp. 1035-1048, 2007.
[14] S. Islam, I. Ali, X. Ran, A. Shah, A. Siddiqui, Effects of couple stresses on Couette and Poiseuille flow, Int. J. Nonlinear Sci. Numer. Simmul, Vol. 10, No. 1, pp. 99-112, 2009.
[15] T. Chinyoka, O. D. Makinde, Analysis of transient generalized Couette flow of a reactive variable viscosity third-grade liquid with asymmetric convective cooling, Mathematical and Computer Modelling, Vol. 54, No. 1-2, pp. 160-174, 2011.
[16] Y. Aksoy, M. Pakdemirli, Approximate analytical solutions for flow of a third-grade fluid through a parallel-plate channel filled with a porous medium, Transport in Porous Media, Vol. 83, pp. 375-395, 2010.
[17] V. Marinca, N. Herişanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, International communications in heat and mass transfer, Vol. 35, No. 6, pp. 710-715, 2008.
[18] T. Papanastasiou, G. Georgiou, A. N. Alexandrou, 2021, Viscous fluid flow, CRC press,
[19] A. Siddiqui, M. Ahmed, Q. Ghori, Couette and Poiseuille flows for non-Newtonian fluids, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 1, pp. 15-26, 2006. | ||
آمار تعداد مشاهده مقاله: 17 تعداد دریافت فایل اصل مقاله: 77 |