
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,822 |
تعداد مشاهده مقاله | 131,618,092 |
تعداد دریافت فایل اصل مقاله | 103,407,308 |
Exact solutions for Two-dimensional flow of Fractional NTNN fluid within an oscillatory rectangular enclosure | ||
Journal of Computational Applied Mechanics | ||
دوره 56، شماره 2، تیر 2025، صفحه 457-469 اصل مقاله (745.48 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2025.390562.1370 | ||
نویسندگان | ||
Sohail Nadeem* 1، 2، 3؛ Sobia Naz1؛ Bushra Ishtiaq1؛ Jehad Alzabut2، 4 | ||
1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan | ||
2Department of Mathematics and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia | ||
3Department of Mathematics, Wenzhou University, Wenzhou, 325035, China | ||
4Department of Industrial Engineering, OSTIM Technical University, Ankara 06374, Türkiye | ||
چکیده | ||
In this paper, we present an analysis for the unsteady two-dimensional flow of incompressible fractional NTNN model. The purpose of this research is to detect exact solutions for the cosine oscillation inside an oscillating rectangular duct having fractional fluid. The mixed initial-boundary value problem is simplified by using Laplace and double finite Fourier sine transform. The impacts of pertinent parameters on the velocity profile and the corresponding shear stresses are analyzed through graphical illustrations for cosine oscillation. Our results indicate that the fluid's flow rises in correlation with fractional and rheological factors, such as α,N,ω, and t. As limiting cases of exact solution, the results can also be obtained for the ordinary NTNN and Newtonian fluid. | ||
کلیدواژهها | ||
Fractional calculus؛ Fractional Nadeem trigonometric non-Newtonian Model؛ Non-Newtonian fluid؛ Oscillating rectangular duct | ||
مراجع | ||
[1] M. Abu-Shady, M. K. A. Kaabar, A Generalized Definition of the Fractional Derivative with Applications, Mathematical Problems in Engineering, Vol. 2021, No. 1, pp. 9444803, 2021.
[2] A. Raza, T. Thumma, S. U. Khan, M. Boujelbene, A. Boudjemline, I. A. Chaudhry, I. Elbadawi, Thermal mechanism of carbon nanotubes with Newtonian heating and slip effects: A Prabhakar fractional model, Journal of the Indian Chemical Society, Vol. 99, No. 10, pp. 100731, 2022/10/01/, 2022.
[3] T. Anwar, P. Kumam, Asifa, P. Thounthong, S. Muhammad, F. Z. Duraihem, Generalized thermal investigation of unsteady MHD flow of Oldroyd-B fluid with slip effects and Newtonian heating; a Caputo-Fabrizio fractional model, Alexandria Engineering Journal, Vol. 61, No. 3, pp. 2188-2202, 2022/03/01/, 2022.
[4] E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, J. A. Hernández-Pérez, R. F. Escobar-Jiménez, Artificial neural networks: a practical review of applications involving fractional calculus, The European Physical Journal Special Topics, Vol. 231, No. 10, pp. 2059-2095, 2022/08/01, 2022.
[5] N. A. Sheikh, D. L. C. Ching, I. Khan, D. Kumar, K. S. Nisar, A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer, Alexandria Engineering Journal, Vol. 59, No. 5, pp. 2865-2876, 2020/10/01/, 2020.
[6] N. Sene, Analytical Solutions of a Class of Fluids Models with the Caputo Fractional Derivative, Fractal and Fractional, Vol. 6, No. 1, pp. 35, 2022.
[7] S. Nadeem, B. Ishtiaq, J. Alzabut, S. M. Eldin, Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate, Case Studies in Thermal Engineering, Vol. 47, pp. 103077, 2023/07/01/, 2023.
[8] A. Rauf, A. Muhammad, Multi-layer flows of immiscible fractional second grade fluids in a rectangular channel, SN Applied Sciences, Vol. 2, No. 10, pp. 1714, 2020/09/21, 2020.
[9] S. Nadeem, B. Ishtiaq, J. Alzabut, A. M. Hassan, Fractional Nadeem trigonometric non-Newtonian (NTNN) fluid model based on Caputo-Fabrizio fractional derivative with heated boundaries, Scientific Reports, Vol. 13, No. 1, pp. 21511, 2023/12/06, 2023.
[10] I. Barmak, D. Picchi, A. Gelfgat, N. Brauner, Flow of a shear-thinning fluid in a rectangular duct, Physical Review Fluids, Vol. 9, No. 2, pp. 023303, 02/13/, 2024.
[11] S. Nadeem, B. Ishtiaq, J. Alzabut, S. M. Eldin, Implementation of differential transform method on the squeezing flow of trigonometric non-Newtonian fluid between two heated plates, International Journal of Modern Physics B, Vol. 38, No. 24, pp. 2450326, 2024.
[12] M. Ghalib, A. Zafar, Z. Hammouch, M. Riaz, K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - Series S, Vol. 13, 11/21, 2018.
[13] H. Zahir, Mehnaz, J. Gul, M. Inc, R. T. Alqahtani, Impact of fractional magnetohydrodynamic and hall current on ree-eyring fluid flow by using radial basis function method, Alexandria Engineering Journal, Vol. 88, pp. 210-215, 2024/02/01/, 2024.
[14] M. Arif, P. Kumam, W. Watthayu, Analysis of constant proportional Caputo operator on the unsteady Oldroyd-B fluid flow with Newtonian heating and non-uniform temperature, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 104, No. 2, pp. e202300048, 2024.
[15] A. Al Agha, Z. A. M., R. Muhammad, S. Ahmad, A. Shajar, N. Mudassar, H. and Al Garalleh, Analysis of active and passive control of fluid with fractional derivative, Numerical Heat Transfer, Part A: Applications, pp. 1-19.
[16] S. Sarwar, M. Aleem, M. A. Imran, A. Akgül, A comparative study on non-Newtonian fractional-order Brinkman type fluid with two different kernels, Numerical Methods for Partial Differential Equations, Vol. 40, No. 1, pp. e22688, 2024. | ||
آمار تعداد مشاهده مقاله: 73 تعداد دریافت فایل اصل مقاله: 117 |