
تعداد نشریات | 163 |
تعداد شمارهها | 6,711 |
تعداد مقالات | 72,495 |
تعداد مشاهده مقاله | 130,287,568 |
تعداد دریافت فایل اصل مقاله | 102,763,731 |
اثر ترکیب تاج پوشش گونههای درختچهای بر شاخصهای کیفیت خاک در غرب مازندران | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 2، اردیبهشت 1404، صفحه 519-543 اصل مقاله (1.99 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.382570.669791 | ||
نویسندگان | ||
یحیی کوچ* 1؛ ناهید جعفریان2؛ کتایون حق وردی3 | ||
1گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران. | ||
2بخش تحقیقات جنگلها، مراتع و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، ایلام، ایران. | ||
3گروه علوم و صنایع چوب و کاغذ، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران. | ||
چکیده | ||
ترکیبهای مختلف پوشش گیاهی میتواند اثرات برجستهای در تغییرپذیری ویژگیهای خاک داشته باشند. بنابراین مطالعه حاضر با هدف اثر ترکیب تاج پوشش گونههای درختچهای بر شاخصهای کیفیت خاک انجام گرفت. ویژگیهای مختلف لاشبرگ و خاک تحت پوششدرختچهای آمیخته با چهار گونه (سیاهولیک، زرشک، گالش انگور و آلوچهوحشی)، سه گونه (سیاهولیک، زرشک و گالش انگور)، دو گونه (سیاهولیک و زرشک)، پوشش با غالبیت زرشک و پوشش با غالبیت سیاه ولیک مطالعه شد. بدین منظور در هر رویشگاه سه قطعه منتخب یک هکتاری با فواصل حداقل 600 متر انتخاب و در هر قطعه منتخب، پنج نمونه و در مجموع از هر یک از رویشگاهها، 15 نمونه لاشبرگ و خاک برداشت شد. نتایج حاکی از اثرات معنیدار ترکیبهای مختلف پوشش گیاهی بر اکثر ویژگیهای لاشبرگ و خاک بود. بهطوریکه بیشترین مقدار نیتروژن لاشبرگ و بیشترین نسبت کربن به نیتروژن لاشبرگ به رویشگاه با غالبیت زرشک (46/24) تعلق داشت. بیشترین مقادیر ویژگیهای تخلخل، پایداری خاکدانه، درصد رس، محتوای رطوبت، کربن آلی، ذخیره کربن و نیتروژن، نیتروژن، پتاسیم، کلسیم، منیزیم، شدت معدنیشدن خالص نیتروژن، آمونیوم، نیترات، کربن و نیتروژن ذرهای و آلی محلول، فعالیت آنزیمها، موجودات زنده خاک، تنفس پایه و برانگیخته، زیست توده میکروبی کربن و نیتروژن و فسفر در ترکیب تاج پوشش با چهار گونه مشاهده شد. نتایج تجزیه و تحلیل مؤلفههای اصلی (PCA) نشان داد که رویشگاههایی با حاصلخیزی و فعالیت زیستی بالا متعلق به ترکیب تاج پوشش با چهار گونه بود. نتایج این پژوهش حاکی از آنست که ترکیب پوشش گیاهی با چهار گونه درختچهای میتواند باعث حفظ کیفیت خاک شود. | ||
کلیدواژهها | ||
پوشش درختچهای؛ حاصلخیزی خاک؛ فعالیت آنزیم مشخصه زیستی خاک؛ مشخصه لاشبرگ | ||
مراجع | ||
Adl, S. M., Acosta-Mercado, D., Anderson, T. R., & Lynn, D. H. (2006). Protozoa, supplementary material. Soil Sampling and Methods of Analysis, 2 (1): 455-470. Ajorlo, M., Abdullah, R., Hanif, M., Husni, A., & Yusoff, M.K. )2011(. Impacts of livestock grazing on selected soil chemical properties in intensively managed pastures of Peninsular Malaysia. Pertanika J. Trop. Agric. Sci, 34, 109–121. Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London. Allison, L.E. (1965). Organic carbon. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 1367-1378. - doi: 10.2134/agronmonogr9.2. c39 Ambrosino, M. L., Torres, Y. A., Lucero, C. T., Lorda, G. S., Ithurrart, L. S., Martínez, J. M., Armando, L. V., Garayalde, A., & Busso, C. A. (2023). Impacts of shrubs on soil quality in the native Monte rangelands of Southwestern Buenos Aires, Argentina. Land Degradation & Development, 34(11), 3406-3417. DOI: 10.1002/ldr.4692 Anderson, T.H., & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem, 22, 251–255. Asghari Sorkhi, A., Hojjati, S.M., Jalilvand, H., & Mojarabi, M. (2015). The Effect of Canopy Composition on Soil Properties in Pure and Mixed Stands of Beech (Case Study: Aland Forest -Sari). Journal of Renewable Natural Resources Research, 6(3), 1-10. (In Persian) Bastida, F., Zsolnay, A., Hernández, T. & García, C. (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma, 147,159–171. https://doi.org/10.1016/j.geoderma.2008.08.007 Bayranvand, M., Kooch, Y., & Rey, A. (2017). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. European Journal of Forest Research, 136, 447–456. DOI: 10.1007/s10342-017-1044-5 Bazyari, M., Etemad, V., Kooch, Y., & Shirvany, A. (2021). Soil fauna communities and microbial activities response to litter and soil properties under degraded and restored forests of Hyrcania. iForest, 14: 490-498. doi: 10.3832/ifor3583-014 [online 2021-11- 11] Bending, G.D., Turner, M.K., Rayns, F., Marx, M.C. & Wood, M. (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry, 36,1785–1792. https://doi.org/10.1016/j.soilbio.2004.04.035 Berkelmann, D., Schneider, D., Meryandini, A. & Daniel, R. (2020). Unravelling the effects of tropical land use conversion on the soil microbiome. Environmental Microbiome, 15 (3), 178-185. DOI: 10.1186/s40793-020-0353-3 Binkley, D., & Fisher, F. (2013). Ecology and management of forest soils. 4th ed. WileyeBlackwell. Blake, G. R., & Hartge, K. H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI. 377–382. Boudjabi, S., & Chenchouni, H. (2022). Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena, 210, 105910. https://doi.org/10.1016/j.catena.2021.105910 Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analysis of soils. Journal of Agrobiology, 56, 464-465. doi: 10.2134/agronj1962.00021962005400050028x Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-261. Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 595-624. Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842. Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y. & Zhang, S. (2013). Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PloS one, 8(6): 1-12. https://doi.org/10.1371/journal.pone.0067353 Cheng, M., Xiang, Y., Xue, Z., An, S., Darboux, F., (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau.China. Catena, 124, 77–84. Cui, Y., Fang, L., Deng, L., Guo, X., Han, F., Ju, W., Wang, X., Chen, H., Tan, W. & Zhang, X. (2019). Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ, 658, 1440–1451. Dinakaran, J. & Krishnayya, N. S. R. (2008) Variation in type of vegetal cover and heterogeneity of soil organic carbon in affecting sink capacity of tropical soils. Current Science, 94 (9), 1144-1150. Dong Y., Chen, R., Petropoulos, E., Yu, B., Zhang, J., Lin, X., Gao, M., & Feng, Y. (2022). Interactive effects of salinity and SOM on the ecoenzymatic activities across coastal soils subjected to a saline gradient. Geoderma, 406, 115519. https://doi.org/10.1016/j.geoderma.2021.115519 Duran, J., Rodriguez, A., Palacios, J.M.F., & Gallardo, A. (2009). Changes in net Nmineralization rates and soil N and P pools in pine forest wildfire chronosequence. Biology and Fertility of Soils, 45, 781–788. Eivazi Ney, M., Soltani Toularoud, A. A., Shahab, H., Ghavidel A., & Ghasemi, S. (2019). Determination of the most important microbial indicators as soil health index in cadmium and lead contaminated soils. Environmental Sciences Studies, 4(1), 1142-1150. (In Persian) Elie, F., Vincenot, L., Berthe, T., Quibel, E., Zeller, B., Saint-André, L., Normand, M., Chauvat, M., & Aubert, M. (2018). Soil fauna as bioindicators of organic matter export in temperate forests. Forest Ecology and Management, 429, 549-557. doi: 10.10 16/j.foreco.2018.07.053 Fabíola Barros, M., Pinho, B. X., Leão, T., & Tabarelli, M. (2018). Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology, 11(4): 613-622. https://doi.org/10.1093/jpe/rtx037 Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P., & Lamoureux, S. F. (2020). Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications, 11(1), 4500. doi: 10.1038/s41467-020-18331-w Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., Philipson, C.D., Mikusiński, G., Andersson, E., Westerlund, B., Andrén, H., Moberg, F., & Moen, J. (2013). Bengtsson Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. 10.1038/ncomms2328 García-Ruiz, R., Ochoa, V., Hinojosa, MB. & Carreira, JA. (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40,2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023 Ghaderi, E., & Kooch, Y. (2021). Effect of pure and mixed canopy composition of Black Hawthorn and Barberry on soil biochemical activities and microbial stoichiometry. Pasture, 15(3), 398-410. (In Persian) Gorobtsova, O.N., Gedgafova, F.V., Uligova, T.S., & Tembotov, R.K. (2016). Eco physiological indicators of microbial biomass status in chernozem soils of the Central Caucasus (in the territory of Kabardino-Balkaria with the Terek variant of altitudinal zonation). Russian Journal of Ecology. 47, 4. 19-25. DOI: 10.1134/S1067413616010069 Handayani, IP., Coyne. MS., &Tokosh. RS. (2010). Soil organic matter fractions and aggregate distribution in response to tall fescue stands. International Journal of Soil Science 5, 1-10. doi: 10.3923/ijss.2010.1.10 Heděnec, P., Zheng, H., Siqueira, D.P, Lin, Q., Peng, Y., Kappel, I., Schmidt, T. G., Frøslev, Kjøller, R., Rousk, J., & Vesterdal, L. (2023). Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. Forest Ecology and Management, 527, 120608. https://doi.org/10.1016/j.foreco.2022.120608 Homer, C.D., & Pratt, P.F. (1961). Methods of analysis for soils, plants and waters. Agricultural Sciences Publications, University of California, Berkeley, CA, USA. 309 Hu, C., Fu, B., Liu, G., Jin, T., & Guo, L. 2010. Vegetation patterns influence on soil microbial biomass and functional diversity in a Hilly area of the Loess Plateau, China. Journal of Soils and Sediments, 10(6): 1082- 1091. DOI: 10.1007/s11368-010-0209-3 Idbella, M., Filippis, F., De Zotti, M., Sequino, G., Abd-Elgawad, A.M., Fechtali, T., Mazzoleni, S., & Bananomi, G. (2022). Specific microbiome signatures under the canopy of Mediterranean shrubs. Applied Soil Ecology, 173, 104407. DOI: 10.21203/rs.3.rs-742200/v1 Jafarian, N., Mirzaei, J., Omidipour, R., & Kooch, Y. (2024). Yahya Effects of micro-climatic conditions on soil properties along a climate gradient in oak forests, west of Iran: Emphasizing phosphatase and urease enzyme activity. Catena, 224, 106960. https://doi.org/10.1016/j.catena.2023.106960 Jimenez, J. J., Lal, R., Leblanc H. A. & Russo, R. O. (2011) Soil organic carbon pool under nativetree plantations in Caribbean lowlands of Costa Rica. Forest Ecology and Management, 241, 134–144. Jones, D.L., & Willett, V.B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry. 38, 991–999. ttps://doi.org/10.1016/j.soilbio.2005.08.012 Karimiyan Bahnemiri, A., Taheri Abkenar, K., Kooch, Y., & Salehi; A. (2019b). Effect of canopy composition of tree species on soil organic and mineral properties at West Hyrcanian Forests of Iran (Case Study: Korkoroud forests in Noshahr). Forest and Wood Products, 72(1),47(56). (In Persian) Karimiyan Bahnemiri, A., Taheri Abkenar, K., Kooch, Y., & Salehi; A. (2019a). The effect of canopy combination in over story on nutrient Contentand microbial indices of soil in Korkoroud forests of Noshahr. Iranian Journal of Forest, 11(4), 547-558. (In Persian) Kazmierczak, M., Błońska, E., Lasota. J. (2024). Effect of litter decomposition and nutrient release from shrub litter on enzymatic activity and C/N/P stoichiometry of soils in a temperate pine forest. Acta Oecologica, 124, 104020. https://doi.org/10.1016/j.actao.2024.104020 Kemper, W.D. Rosenau, R.C. (1986). Aggregate stability and size distribution. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed. American Society of Agronomy, Madison, Wisconsin.pp. 383–411. Kianmehr, A., Hojjati, S. M., Kooch, Y., & Ghasemi Aghbash, F. (2019). Effect of canopy composition on litterfall rate, respiration and some Soil properties in pure and mixed stands of beech and hornbeam. Journal of Forest Research and Development, 3(5), 373-376. (In Persian) Kooch, Y., & Dolat Zarei, F. (2023). The effect of different canopy composition of shrublands on soil quality indicators in a semi-arid climate of Iran. Geoderma Regional, 34, e00688. https://doi.org/10.1016/j.geodrs.2023.e00688 Kooch, Y., & Noghre, N. (2020) The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Science of The Total Environment, 703, 1–9. https://doi.org/10.1016/j.scitotenv.2019.135497 Kooch, Y., & Noghre, N. (2020). The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Science of the Total Environment, 703(7): 1-9. DOI: 10.1016/j.scitotenv.2019.135497 Kooch, Y., & Sohrabzadeh, Z. (2024). Soil quality indicators are clearly plant species-specific: Implication for ecosystem management in a semi-arid landscape. Ecological Engineering, 207, 107357. https://doi.org/10.1016/j.ecoleng.2024.107357 Kooch, Y., Ehsani, S., & Akbarinia, M. (2020). Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil and Tillage Research, 200(7): 1-11. DOI: 10.1016/j.still.2020.104621 Kooch, Y., Ghorbanzadeh, N., Hajimirzaaghaee, S., Francaviglia, R. (2023). Soil biological quality as affected by vegetation types in shrublands of a semi-arid montane environment. Applied Soil Ecology. 189, 104980. DOI: 10.1016/j.apsoil.2023.104980 Kooch, Y., Ghorbanzadeh, N., Wirth, S., Novara, A., & Shah Piri, A. (2021). Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecological Indicators. 126,107672. DOI: 10.1016/j.ecolind.2021.107672 Kooch, Y., Rostayee, F., & Hosseini, S. M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena, 144, 65–73. Kooch, Y., Samadzadeh, B., & Hosseini, S.M., (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150, 223-229. DOI: 10.1016/j.catena.2016.11.023 Kooch, Y., Tavakoli Feizabadi, M., & Haghverdi, K. (2023). The Effect of Plantation Stands with Different Ages and Rangeland cover on the Properties of Organic and Surface Soil Layer. Journal of Water and Soil, 37(5), 701-720. (In Persian with English abstract). https://doi.org/10.22067/jsw.2023.82251.1280 Lagomarsino, A., Benedetti, A., Marinari, S., Pompili, L., Moscatelli, M.C., Roggero, P.P., Lai, R., Ledda, L., & Grego, S. (2011). Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem. Biology and Fertility of Soils, 47, 283–291. DOI: 10.1007/s00374-010-0530-4 Lee, S.-H., Kim, M.-S., Kim, J.-G., & Kim, S. O. (2020). Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability, 12(19), 8209. DOI: 10.3390/su12198209 Lemanceau, P., Creamer, R., & Griffiths, B. S. (2016). Soil biodiversity and ecosystem functions across Europe: A transect covering variations in bio-geographical zones, land use and soil properties. Applied Soil Ecology, 97, 1–2. doi: 10.1016/j.apsoil.2015.07.017. Lemanowicz, J., Haddad, S.A., Bartkowiak, A., Lamparski, R. & Wojewódzki, P. (2020). The role of an urban park's tree stands in shaping the enzymatic activity, glomalin content and physicochemical properties of soil. Sci. Total Environ, 741,140446. doi: 10.1016/j.scitotenv.2020.140446 Li, L., Vogel, J., He, Z., Zou, X., Ruan, H., Huang, W., Wang, J. & Bianchi, T.S. (2016). Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PloS one, 11(3), p.e0150898. Li, M., Zhou, X., Zhang, Q. & Cheng, X. (2014). Consequences of afforestation for soil nitrogen dynamics in Central China. Agriculture, Ecosystems and Environment, 183(4): 40–46 Li, Z., Wu, X. & Chen, B. (2007). Changes in transformation of soil organic C and functional diversity of soil microbial community under different land uses. Agricultural Sciences in China, 6(10),1235–1245. https://doi.org/10.1016/S1671-2927(07)60168-0 Liao, C., Luo, Y., Fang, C., Chen, J., & Li, B. (2012). The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta‐analysis. Global Ecology and Biogeography, 21(3), 318-327. https://doi.org/10.1111/j.1466-8238.2011.00690.x Ling, N., Sun, Y., Ma, J., Guo, J., Zhu, P., Peng, C. & Shen, Q. (2014). Response of the bacterial diversity and soil enzyme activity in particle-size fractions of mollisol after different fertilisation in a long-term experiment. Biology and Fertility of Soils, 50, 901–911. DOI: 10.1007/s00374-014-0911-1 Liu, Y., Wei, X., Guo, X., Niu, D., Zhang, J. Gong, X. & Jiang, Y. (2012). The long-term effects of reforestation on soil microbial biomass carbon in sub-tropic severe red soil degradation areas. Forest Ecology and Management, 285(8): 77-84. Malek Poor, B., Ahmadi, T. & Kazemi Mazandarani, S.S. (2012). Investigation of land covers management effect on physical and chemical properties of soil at Kojur region, Mazandaran. Iran. J. Plant Eco-physiol, 3, 90–100 Mohmedi Kartalaei, Z., Kooch, Y., & Dianati Tilaki, G. A. (2023). Litter and soil properties under woody and non-woody vegetation types: Implication for ecosystem management in a mountainous semi-arid landscape. Journal of Environmental Management, 348: 119238. https://doi.org/10.1016/j.jenvman.2023.119238 Mohr, D., Simon, M., & Topp, W. (2005). Stand composition affects soil quality in oak stands on reclaimed and natural sites. Geoderma, 129: 45-53. https://doi.org/10.1016/j.geoderma.2004.12.029 Moscatelli, M.C., Tizio, A.D., Marinari, S. & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research, 97, 51-59 Mousavi Sani, M., Azarakhshi, M., Nazari Samani, A., &Farzadmehr, J. (2023). Determining the effect of plant species type on some soil properties in the mountain rangelands in Kakhk watershed. Journal of Rangeland, 16(4), 765-778. (In Persian) Mulia, R., Hoang, S.V., Dinh, V. M., Duong, N.B.T., Nguyen, A.D., Lam, D.H., Thi Hoang, D.T., & van Noordwijk, M. (2021). Earthworm diversity, forest conversion and agroforestry in Quang Nam Province, Vietnam. Land, 10(1), 10-36. https://doi.org/10.3390/land10010036 Nannipieri, P., Kandeler, E. & Ruggiero, P. (2002.) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33 Neatrour, M. A., Jones, R. H., & Golladay, S. W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. Neher, D.A. (1999). Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems, 45, 159-185. Nianpeng, H., Yunhai, Z., Jingzhong, D., Xingguo, H., Taogetao, B., & Guirui, Y. (2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859–873. DOI: 10.1007/s11442-012-0968-4 Paz-Ferreiro, J., Gascó, G., Gutiérrez, B. & Méndez, A. (2011). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48(5), 511–517. doi:10.1007/s00374-011-0644-3 Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludgeand sewage sludge bio char to soil. Biology and Fertility of Soils, 48, 511–517. DOI: 10.1007/s00374-011-0644-3 Perie C. & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315-325 Phillips, H.R.P., Guerra, C.A., Bartz, M.L.C., Briones, G., Brown, T. W., Crowther, O., et al. (2019). Global distribution of earthworm diversity. Science, 366 (6464): 480–485. https://dx.doi.org/10.1126/science. aax4851 Piao, H.C., Zhu, J.M., Liu, G.S., Liu, C.Q., & Tao, F.X. (2006). Changes of natural 13C abundance in microbial biomass during litter in Douglas-fir Forests. Canadian Journal of Forest Research, 20: 259-266. https://doi.org/10.1016/j.apsoil.2005.09.006 Pires, L.F., Brinatti, A.M., Saab, S.C., & Cassaro, F.A. (2014). Porosity distribution by computed tomography and its importance to characterise soil clod samples. Applied Radiation and Isotopes, 92, 37–45. https://doi.org/10.1016/j.apradiso.2014.06.010 Qiu, Q., Li, J. Y., Wang, J. H., He, Q., Su, Y. & Ma, J. W. (2015). Interactions between soil water and fertilizer application on fine root biomass yield and morphology of Catalpa bungei seedlings. Applied Mechanics and Materials, 700, 323–333. Raiesi, F. & Asadi, E. (2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43, 76-82. Ravindran, A., Shang-Shyng, A. & Yang, A. (2015). Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection, 48: 362-369. https://doi.org/10.1016/j.jmii.2014.02.003 Robertson, G. P., Coleman, D. C., Sollins, P., & Bledsoe, C. S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand. Salehi, A., Ghorbanzadeh, N., & Kahneh, E. (2013). Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantation in the north of Iran. Journal of Forest Science, 59, 223–229. DOI: 10.17221/41/2012-JFS Sasongko, P.E., Purwanto, P., Dewi, W.S., & Hidayat, R. (2019). Soil microbial communities below decomposing plant litter from different land uses in Tutur Village. The 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University AIP Conf. Proc. 2019(1):040002. Sharrow, S. H., & Ismail, S. (2004). Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60, 123–130. DOI: 10.1023/B:AGFO.0000013267.87896.41 Sofo, A., Mininni, A. N., Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. https://doi.org/10.3390/agronomy10040456 Sohrabi, H., Jourgholami, M., Lo Monaco, A., & Picchio, R. (2022). Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land, 11(5), 746. https://doi.org/10.3390/land11050746 Sullivan, P.F., Stokes, M.C., McMillan, C.K., &Weintraub, M. N. (2020). Labile carbon limits late winter microbial activity near Arctic tree line. Nature Communications, 11(1): 1-9. DOI:10.1038/s41467-020-17790-5 Tauqeer, H.M., Turan, V., & Iqbal, M. (2022). In: Production of safer vegetables from heavy metals contaminated soils: the current situation, concerns associated with human health and novel management strategies. Springer, Cham. 301–312. DOI:10.1007/978-3-030-89984-4_28 Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018, May). The effect of degraded and reclaimed forest areas on carbon dioxide gas emissions and soil carbon mineralization in West of Mazandaran. In: Proceedings of the International Symposium of Climate Change and Dendrochronology in Caspian Ecosystems, Sari, Iran. Tong, H., Simpson, A. J., Paul, E. A., & Simpson, M. J. (2021). ‘Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter. ACS Earth and Space Chemistry, 5(6), 1395–1406. https://doi.org/10.1021/acsearthspacechem.1c00033. Tucker Serniak, L. (2017). The effects of earthworms on carbon dynamics in forest soils. Biol. Invasions 12, 213–229. Wang, C., Zhang, G., Zhu, P., Chen, S., Wan, Y. (2023). Spatial variation of soil functions affected by land use type and slope position in agricultural small watershed. Catena, 225, 107029. https://doi.org/10.1016/j.catena.2023.107029 Wang, Q., Liu, J., Wang, Y., Guan, J., Liu, L., & Lv, D.A. (2012). Land use effects on soil quality along a native wetland to cropland chronosequence. European Journal of Soil Biology, 53, 114–120. https://doi.org/10.1016/j.ejsobi.2012.09.008 Wang, Q., Wang, S., Fan, B., & Yu, X. (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant and Soil, 297(1-2), 201-211. https://doi.org/10.1007/s11104-007-9333-2 · Wang, Q., Xiao, F., He, T. & Wang, S. (2010). Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science, 70, 579–587. Wang, R., Creamer, C.A., Wang, X., He, P., Xu, Z., & Jiang, Y. (2016). The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in semi-arid grassland. Ecological Indicators, 61, 806–814. https://doi.org/10.1016/j.ecolind.2015.10.033 Wardle, D. A., Nilsson, M., Zackrisson, O., & Gallet, C. (2003). Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35: 827-835. https://doi.org/10.1016/S0038-0717(03)00118-4 Wollum, A.G. (1983). Cultural methods for soil microorganisms. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 781- 802. doi: 10.2134/agronmonogr9.2.2ed. c37 Xia, J., Ren, R., Chen, Y., Sun, J., Zhao, X., Zhang, S. (2020). Multifractal characteristics of soil particle distribution under different vegetation types in the Yellow River Delta chenier of China. Geoderma, 368, 114311. DOI:10.1016/j.geoderma.2020.114311 Xu, X., Han, L., Wang, Y. & Inubushi, K. (2007). Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Science and Plant Nutrition, 53(4): 430-440. Xu, X., Han, L., Wang, Y., & Inubushi, K. (2007). Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Science and Plant Nutrition, 53(4): 430-440. https://doi.org/10.1111/j.1747-0765.2007.00146.x Yang, K., Zhu, J., Zhang, M., Yan, Q. & Sun, O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), 175-182. https://doi.org/10.1093/jpe/rtq022 Yao, Y., Shaoa, M., Fu, X., Wang, X., & Wei, X. 2020. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. Catena, 174, 362–370. https://doi.org/10.1016/j.catena.2018.11.031 Yifru, A., & Taye, B. (2011). Land use effects on soil organic carbon and nitrogen in some soils of Bale, Southeastern Ethiopia. Trop. Subtrop. Agroecosyst, 14 (1), 229–235. https://doi.org/10.1016/j.ecolind.2022.109116 Yuan, Z. Y., & Chen, H. Y. (2010). Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Critical Reviews in Plant Sciences, 29(4): 204-221. https://doi.org/10.1080/07352689.2010.483579 Zahedifar, M. (2023). Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 106807. https://doi.org/10.1016/j.catena.2022.106807 Zancan, S., Trevisan, R. & Paoletti, M. G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems & Environment, 112(1): 1–12. https://doi.org/10.1016/j.agee.2005.06.018 Zarafshar, M., Vincent, G., Korboulewsky, N., & Bazot, S. (2024). The impact of stand composition and tree density on topsoil characteristics and soil microbial activities. Catena, 234: 107541. https://doi.org/10.1016/j.catena.2023.107541 Zeng, D.H., Hu, Y.L., Chang, S.X., & Fan, Z.P. (2009). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China. Plant Soil, 317, 121–133. DOI:10.1007/s11104-008-9793-z Zeng, Y., Fang, X., Xiang, W., Deng, X. & Peng, C. (2017). Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests. Ecology and Evolution, 7(2):11033–11043 Zhang, K., Zheng, H., Chen, F.L., Ouyang, Z.Y., Wang, Y., Wu, Y.F., Lan, J., Fu, M., & Xiang, X.W. (2015). Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China. Solid Earth, 6, 115–123. DOI:10.5194/se-6-115-2015 Zhang, L., Jing, Y., Chen, C., Xiang, Y., Rezaei Rashti, M., Li, Y., Deng, Q. & Zhang, R. (2021). Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies. GCB Bioenergy, 13(12), 1859–1873. https://doi.org/10.1111/gcbb.12898 Zhang, Y., Wang, L., Jiang, J., Zhang, J., Zhang, Z., & Zhang, M. (2022). Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecological Indicators, 14, 109116. https://doi.org/10.1016/j.ecolind.2022.109116 Zhan-Yuan, Y. U., Fu-Sheng, C. H. E. N., De-Hui, Z. E. N. G., Qiong, Z. H. A. O. & Guang-Sheng, C. H. E. N. (2008). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy Soil. Pedosphere, 18(6): 775-784. Zhao, C., Li, Y., Zhang, C., Miao, Y., Liu, M., Zhuang, W., Shao, Y., Zhang, W., & Fu, S. (2021). Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation. Soil Ecology Letters, 3(2), 145–155. https://doi.org/10.1007/s42832-021-0085-3 Zhou, Y., Sha, M., Jin, H., Wang, L., Zhang, J., Xu, Z., Tan, B., Chen, L., Wang, L., Liu, S., Xiao, J., You, C., Huang, Y., Chen, Y. & Liu, Y. (2023). The expansion of evergreen and deciduous shrubs changed the chemical characteristics and biological community of alpine meadows soil. European Journal of Soil Biology. 117: 103505. https://doi.org/10.1016/j.ejsobi.2023.103505. | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 73 |