
تعداد نشریات | 163 |
تعداد شمارهها | 6,788 |
تعداد مقالات | 73,129 |
تعداد مشاهده مقاله | 133,129,722 |
تعداد دریافت فایل اصل مقاله | 104,151,537 |
بررسی ترمودینامیکی و اقتصادی یک سیستم تولید چندگانۀ جدید مبتنی بر ترنسفورمر گرمای جذبی دو اثره همراه با ذخیره سازی انرژی هوای فشرده | ||
فصلنامه سیستم های انرژی پایدار | ||
دوره 4، شماره 3، تیر 1404، صفحه 285-309 اصل مقاله (1.56 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ses.2025.392283.1129 | ||
نویسندگان | ||
علی عیوضی* 1؛ هادی غائبی2 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشکدۀ فنی و مهندسی، دانشگاه ولی عصر(عج) رفسنجان، رفسنجان، ایران | ||
2استاد، گروه مهندسی مکانیک، دانشکدۀ فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
این مطالعه نوعی سیستم تولید چندگانه را بررسی میکند که امکان تولید نیرو، ارائۀ ظرفیت خنککننده و تولید هیدروژن را فراهم میآورد. این سیستم یک واحد چرخۀ گازی، ترنسفورمر گرمای جذبی، یک الکترولیز غشای تبادل پروتون، یک سیستم ذخیرهسازی انرژی هوا، و یک ژنراتور مبدل حرارتی هوا دارد. هدف از تحلیل انرژی در مطالعۀ موردی صورتگرفته روی سیستم پیشنهادی، محاسبۀ پارامترهای اساسی همچون توان خروجی خالص، نرخ تولید هیدروژن و راندمان انرژی است. ارزیابی اگزرژی انجامشده در سیستم مورد مطالعه اهمیت زیادی در شناسایی تخریب اگزرژی در اجزای سیستم به منظور بهبود عملکرد دارد. علاوه بر این، یک تحلیل پارامتریک برای درک چگونگی تأثیر شرایط عملیاتی متفاوت بر عملکرد سیستم انجام شد. جنبۀ نوآوری مطالعۀ حاضر بر این اساس است که اتلافهای توربین گازی بازیابی میشود و به صورت مستقیم برای تأمین انرژی مصرفی الکترولایزر به منظور تولید هیدروژن مورد استفاده قرار میگیرد. نتایج ارزیابی ترمودینامیکی نشان میدهد بازده انرژی سیستم پیشنهادی 26 درصد است، در حالی که راندمان اگزرژی 12درصد است. نتایج نشان میدهد این سیستم قادر است هیدروژن را با نرخ 037/0 کیلوگرم در ساعت تولید کند که این میزان میتواند نیاز بخشی از مصرفکنندۀ هدف را تأمین کند. مجموع تخریب اگزرژی در سیستم مورد مطالعه 1479 کیلووات است و توان خروجی 49/5 کیلو وات حاصل میشود. تجزیهوتحلیل اقتصادی هزینۀ کل سیستم 204/0 دلار به ازای هر گیگاژول را نشان میدهد. علاوه بر این، هزینۀ تراز تولید برق 379/4 و هزینۀ تولید هیدروژن 741/1 است. | ||
کلیدواژهها | ||
سیستم تولید چندگانه؛ ترنسفورمر گرمای جذبی؛ بازیابی حرارتی؛ ذخیره سازی انرژی هوا فشرده | ||
مراجع | ||
[1] Liu L, Mei Q, Jia W. A flexible diesel spray model for advanced injection strategy. Fuel. 2022 Apr 15;314:122784.
[2] Chen R, Zhao B, He T, Tu L, Xie Z, Zhong N, Zou D. Study on coupling transient mixed lubrication and time-varying wear of main bearing in actual operation of low-speed diesel engine. Tribology International. 2024 Mar 1;191:109159.
[3] Shi W, Zhang R, Li H, Wu Y, Toan S, Sun Z, Sun Z. Modulating mxene‐derived Ni‐Mom‐Mo2‐mTiC2Tx structure for intensified low‐temperature ethanol reforming. Advanced Energy Materials. 2023 Oct;13(40):2301920.
[4] Huo J, Peng C. Depletion of natural resources and environmental quality: Prospects of energy use, energy imports, and economic growth hindrances. Resources policy. 2023 Oct 1;86:104049.
[5] Qi X, Yu F, Meng Z, Sun Z, Zhang N, Guo Z. Preliminary design of the suppressive containment system based on HPR1000. Nuclear Engineering and Design. 2023 Dec 15;415:112743.
[6] Ifaei P, Nazari-Heris M, Charmchi AS, Asadi S, Yoo C. Sustainable energies and machine learning: An organized review of recent applications and challenges. Energy. 2023 Mar 1;266:126432.
[7] Shinde TU, Dalvi VH, Patil RG, Mathpati CS, Panse SV, Joshi JB. Thermal performance analysis of novel receiver for parabolic trough solar collector. Energy. 2022 Sep 1;254:124343.
[8] Dan M, He A, Ren Q, Li W, Huang K, Wang X, Feng B, Sardari F. Multi-aspect evaluation of a novel double-flash geothermally-powered integrated multigeneration system for generating power, cooling, and liquefied Hydrogen. Energy. 2024 Feb 15;289:129900.
[9] Guzović Z, Duić N, Piacentino A, Markovska N, Mathiesen BV, Lund H. Paving the way for the Paris Agreement: Contributions of SDEWES science. Energy. 2023 Jan 15;263:125617.
[10] Arslan O, Arslan AE. Multi-criteria optimization of a new geothermal driven integrated power and hydrogen production system via a new index: economic sustainability (EcoSI). Fuel. 2024 Feb 15;358:130160.
[11] Awad M, Said A, Saad MH, Farouk A, Mahmoud MM, Alshammari MS, Alghaythi ML, Aleem SH, Abdelaziz AY, Omar AI. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexandria Engineering Journal. 2024 Jan 1;87:213-39.
[12] Wang J, Chen B, Che Y. Bi-level sizing optimization of a distributed solar hybrid CCHP system considering economic, energy, and environmental objectives. International Journal of Electrical Power & Energy Systems. 2023 Feb 1;145:108684.
[13] Liu X, Hayati H. CCHP optimization for a building through optimal size of the prime mover considering energy, exergy, economics, and environmental aspects. Case Studies in Thermal Engineering. 2022 Nov 1;39:102403.
[14] Lucarelli G, Genovese M, Florio G, Fragiacomo P. 3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy. Energy. 2023 Sep 1;278:127837.
[15] Anderson A. Optimum sizing of CCHP system using modified Group teaching optimization algorithm. Journal of Smart Systems and Stable Energy. 2022 Dec 1;1(4):303-18.
[16] Tooryan F, HassanzadehFard H, Dargahi V, Jin S. A cost-effective approach for optimal energy management of a hybrid CCHP microgrid with different hydrogen production considering load growth analysis. International Journal of Hydrogen Energy. 2022 Feb 1;47(10):6569-85.
[17] Akbarnataj K, Saffaripour M, Houshfar E. Novel design of a CCHP system to boost nearly zero-carbon building concept. Energy Conversion and Management. 2024 Jun 1;309:118468.
[18] Wang J, Al-attab K, Heng TY. Techno-economic and thermodynamic analyses of a novel CCHP system driven by a solid oxide fuel cell integrated with a biomass gasification unit and a double-effect LiBr-water absorption chiller or heat cycle and carbon capture. Biomass Conversion and Biorefinery. 2024 Jul 3:1-26.
[19] Lu Z, Duan L, Wang Z. Performance evaluation of a novel CCHP system integrated with MCFC, ISCC and LiBr refrigeration system. International Journal of Hydrogen Energy. 2022 Jun 5;47(48):20957-72.
[20] Akman M, Ergin S. Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships and offshore structures. 2021 Nov 26;16(10):1104-13.
[21] Bo Z, Mihardjo LW, Dahari M, Abo-Khalil AG, Al-Qawasmi AR, Mohamed AM, Parikhani T. Thermodynamic and exergoeconomic analyses and optimization of an auxiliary tri-generation system for a ship utilizing exhaust gases from its engine. Journal of Cleaner Production. 2021 Mar 10;287:125012.
[22] Ouyang T, Wang Z, Wang G, Zhao Z, Xie S, Li X. Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine. Energy. 2021 Dec 1;236:121440.
[23] Demir ME, Çıtakoğlu F. Design and modeling of a multigeneration system driven by waste heat of a marine diesel engine. International Journal of Hydrogen Energy. 2022 Dec 8;47(95):40513-30.
[24] Xie L, Yang J, Hu N. Parameter optimization of supercritical CO 2 Brayton cycle for flue gas waste heat recovery of Marine high-speed diesel engine. In2023 7th International Conference on Transportation Information and Safety (ICTIS) 2023 Aug 4 (pp. 1637-1641). IEEE.
[25] Cao Y, Delpisheh M, Yousefiasl S, Athari H, El-Shorbagy MA, Jarad F, Dahari M, Wae-hayee M. Examination and optimization of a novel auxiliary trigeneration system for a ship through waste-to-energy from its engine. Case Studies in Thermal Engineering. 2022 Mar 1;31:101860.
[26] You, H.; Han, J.; Liu, Y. Conventional and advanced exergoeconomic assessments of a CCHP and MED system based on solid oxide fuel cell and micro gas turbine. Int. J. Hydrogen Energy 2020, 45, 12143–12160.
[27] Liu, Y.; Han, J.; You, H. Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture. Energy 2020, 190, 116201.
[28] Gholamian, E.; Ahmadi, P.; Hanafizadeh, P.; Ashjaee, M. Dynamic feasibility assessment and 3E analysis of a smart building energy system integrated with hybrid photovoltaic-thermal panels and energy storage. Sustain. Energy Technol. Assess. 2020, 42, 100835.
[29] Ozturk, M.; Dincer, I.; Javani, N. Thermodynamic modeling of a solar energy based combined cycle with rock bed heat storage system. Sol. Energy 2020, 200, 51–60.
[30] Song, Y.; Mu, H.; Li, N.; Shi, X.; Zhao, X.; Chen, C.; Wang, H. Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy. Int. J. Hydrogen Energy 2022, 47, 24533–24547.
[31] Assareh, E.; Dejdar, A.; Ershadi, A.; Jafarian, M.; Mansouri, M.; Azish, E.; Saedpanah, E.; Aghajari, M.;Wang, X. Performance analysis of solar-assisted-geothermal combined cooling, heating, and power (CCHP) systems incorporated with a hydrogen generation subsystem. J. Build. Eng. 2023, 65, 105727.
[32] Zarei, A.; Akhavan, S.; Rabiee, M.B.; Elahi, S. Energy, exergy and economic analysis of a novel solar driven CCHP system powered by organic Rankine cycle and photovoltaic thermal collector. Appl. Therm. Eng. 2021, 194, 117091.
[33] Assareh, E.; Dejdar, A.; Ershadi, A.; Jafarian, M.; Mansouri, M.; Azish, E.; Saedpanah, E.; Lee, M. Techno-economic analysis of combined cooling, heating, and power (CCHP) system integrated with multiple renewable energy sources and energy storage units. Energy Build. 2023, 278, 112618.
[34] Ghorbani, S.; Deymi-Dashtebayaz, M.; Dadpour, D.; Delpisheh, M. Parametric study and optimization of a novel geothermaldriven combined cooling, heating, and power (CCHP) system. Energy 2023, 263, 126143.
[35] Perrone, D.; Castiglione, T.; Morrone, P.; Pantano, F.; Bova, S. Numerical and experimental assessment of a micro-combined cooling, heating, and power (CCHP) system based on biomass gasification. Appl. Therm. Eng. 2023, 219, 119600.
[36] Liu X, Hu G, Zeng Z. Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle. Energy. 2023 Jan 15;263:125535.
[37] Bouzgarrou S, Abed AM, Chauhan BS, Alsenani TR, Alharbi FS, Alkhalaf S, Albaijan I, Abdullaeva BS, Deifalla A. Thermo-economic-environmental evaluation of an innovative solar-powered system integrated with LNG regasification process for large-scale hydrogen production and liquefaction. Case Studies in Thermal Engineering. 2024 Jan 1;53:103904.
[38] Emadi MA, Mahmoudimehr J. Modeling and thermo-economic optimization of a new multi-generation system with geothermal heat source and LNG heat sink. Energy Conversion and Management. 2019 Jun 1;189:153-66.
[39] Emadi MA, Mahmoudimehr J. Modeling and thermo-economic optimization of a new multi-generation system with geothermal heat source and LNG heat sink. Energy Conversion and Management. 2019 Jun 1;189:153-66.
[40] Kianfard H, Khalilarya S, Jafarmadar S. Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy conversion and management. 2018 Dec 1;177:339-49.
[41] Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. Analysis, synthesis and design of chemical processes. Pearson Education; 2008 Dec 24.
[42] Valero, A., & Torres, C. Relative free energy function and structural theory of thermoeconomics. In Proceedings (Vol. 58, No. 1, p. 28). MDPI. 2020, September.
[43] Razmi AR, Janbaz M. Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES). Energy Conversion and Management. 2020 Jan 15;204:112320.
[44] Sayyaadi H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system. Applied Energy. 2009 Jun 1;86(6):867-79.
[45] Wang L, Bu X, Wang H, Ma Z, Ma W, Li H. Thermoeconomic evaluation and optimization of LiBr-H2O double absorption heat transformer driven by flat plate collector. Energy Conversion and Management. 2018 Apr 15;162:66-76.
[46] Taghavi M, Salarian H, Ghorbani B. Economic evaluation of a hybrid hydrogen liquefaction system utilizing liquid air cold recovery and renewable energies. Renewable Energy Research and Applications. 2023 Jan 1;4(1):125-43.
[47] Akrami E, Chitsaz A, Nami H, Mahmoudi SM. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy. 2017 Apr 1;124:625-39.
[48] Kianfard H, Khalilarya S, Jafarmadar S. Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy conversion and management. 2018 Dec 1;177:339-49.
[49] Akrami E, Chitsaz A, Nami H, Mahmoudi SM. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy. 2017 Apr 1;124:625-39.
[50] Cavalcanti EJ. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system. Renewable and Sustainable Energy Reviews. 2017 Jan 1;67:507-19.
[51] Sadreddini A, Fani M, Aghdam MA, Mohammadi A. Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle. Energy conversion and management. 2018 Feb 1;157:111-22. | ||
آمار تعداد مشاهده مقاله: 69 تعداد دریافت فایل اصل مقاله: 8 |