
تعداد نشریات | 163 |
تعداد شمارهها | 6,714 |
تعداد مقالات | 72,518 |
تعداد مشاهده مقاله | 130,577,279 |
تعداد دریافت فایل اصل مقاله | 102,851,758 |
تاثیر قارچ حلکننده فسفات، هیومیک اسید و منابع فسفر بر رشد و جذب فسفر گیاه گوجه فرنگی | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 2، اردیبهشت 1404، صفحه 433-444 اصل مقاله (1.35 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.384683.669837 | ||
نویسندگان | ||
صفورا ناهیدان* ؛ سارا موحد | ||
گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
تاثیر کاربرد قارچ تریکودرما، هیومیک اسید و منابع فسفر بر فراهمی فسفر خاک و تاثیر آن بر ویژگیهای رشد و جذب فسفر گیاه گوجه فرنگی در یک آزمایش گلخانهای مورد بررسی قرار گرفت. فاکتورهای آزمایشی شامل 1) قارچ (با و بدون Trichoderma koningii)، 2) هیومیک اسید (0، 2 و 4 گرم برکیلوگرم خاک) و 3) منبع فسفر (بدون فسفر، کاربرد تری کلسیم فسفات و سوپر فسفات ساده) بودند. بیشترین مقادیر وزن تر و خشک اندام هوایی و ریشه و شاخص کلرفیل گیاه در تیمار کاربرد قارچ، 4 گرم بر کیلوگرم هیومیک اسید و کاربرد سوپرفسفات ساده مشاهده شد. مایهزنی قارچ باعث افزایش مقدار جذب فسفر ریشه در خاک بدون فسفر، تیمار شده با تری کلسیم فسفات و سوپر فسفات ساده بهترتیب به میزان 7/33، 9/85 و 8/68 درصد شد. بیشترین مقدار فسفر فراهم خاک و جذب فسفر اندام هوایی گیاه در تیمار کاربرد قارچ، سوپر فسفات ساده و مقدار 4 گرم بر کیلوگرم هیومیک اسید مشاهده شد که نسبت به تیمار بدون قارچ، فسفر و هیومیک اسید به میزان 58 و 153 درصد بیشتر بود. در مجموع، استفاده از هیومیک اسید و قارچ تریکودرما بههمراه کود شیمیایی فسفره میتواند راهکاری مناسب جهت افزایش فسفر فراهم خاک باشد و جذب فسفر و رشد گیاه گوجه فرنگی را بهبود بخشد. | ||
کلیدواژهها | ||
هیومیک اسید؛ آزادسازی فسفر؛ تریکودرما؛ کشاورزی پایدار | ||
مراجع | ||
Adesemoye, A.O., & Kloepper, J.W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology Biotechnology, 85, 1–12. Ai, S., Meng, X., Zhang, Z., Li, R., Teng, W., Cheng, K., & Yang, F. (2023). Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation. Chemosphere, 332, 138822. Behravan, H., Khorassani, R., Fotovat, A., Moezzi, A., & Taghavi, M. (2020). The Effect of humic acid and phosphorus fertilizer on phosphatase enzymes, active carbon and available phosphorus in sugarcane rhizosphere. Iranian Journal of Soil and Water Research, 50(10), 2571-2581. (In Persion) Burt, R. (2004). Soil survey laboratory methods manual: Soil survey investigations. Version 4.0. Natural Resources Conservation Service, Nebraska, United States. Canellas, L.P., Olivares, F.L., Okorokova-Façanha, A.L., & Façanha, A.R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology, 130(4), 1951-1957. Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8(1), 1-18. De Hita, D., Fuentes, M., Fernández, V., Zamarreño, A. M., Olaetxea, M., & García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Frontiers in plant science, 11, 493. Emami, S., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., Motashare Zadeh, B., & Sarmadian, F. (2018). Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 65, 1–9. Ghorchiani, M., Etesami, H., & Alikhani, H.A. (2018). Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agriculture Ecosystem Environment, 258, 59–70. Halajnia, A., Haghnia, G.H., Fotovat, A.M. I.R., & Khorasani, R. (2007). Effect of organic matter on phosphorus availability in calcareous soils. JWSS-Isfahan University of Technology, 10(4), 121-133.(In Persion) Hasan, A., Tabassum, B., Hashim, M., & Khan, N. 2024. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2): 59-75. Jahandideh, A., Barani, M., Dordipour, E., & Ghorbani Nasrabadi, R. (2020). The effect of humic acid on the availability of phosphorus fertilizer and some physiological traits of rapeseed (canola). Water and Soil, 33(6), 873-884. (In Persion) Jindo, K., Soares, T.S., Peres, LEP., Azevedo, I.G., Aguiar, N.O., Mazzei, P., Spaccini, R., Piccolo, A., Olivares, F.L., & Canellas, L.P. (2016). Phosphorus speciation and high-affnity transporters are infuenced by humic substances. Journal of Plant Nutrition and Soil Science, 179, 206– 214. Kashka, F.M., Pirdashti, H., Yaghoubian, Y., & Bakhshandeh, E. (2018). The role of Trichoderma and Enterobacter inoculation on improving wheat yield in different levels of phosphorus fertilizer. Journal of Agroecology, 10 (2), 430-443. (In Persion). Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., & Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis, 51(12), 1658-1669. Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L., Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Zhang, X., Song, M., & Dong, Q. (2023). Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-P-tolerant cotton genotypes. Antioxidants, 12(2), 466. Khalili, N., Ghorbani Nasrabadi, R., Baranimotlagh, M., & Khodadadi, R. (2023). The effect of humic acid and inoculation of actinomycetes isolates on phosphorus solubilization in laboratory condition and phosphorus content in maize (Zea mays). Journal of Soil Management and Sustainable Production, 13(2), 75-94. (In Persion) Khosh Manzar, E., Aliasgharzad, N., Arzanlou, M., Neyshabouri, M. R., & Khoshrou, B. (2019). The effect of Trichoderma isolates on tomato growth and nutrients uptake under water deficit stress. Journal of Agricultural Science and Sustainable Production, 29(2), 107-120 (In Persion). Leme Filho, JF., Thomason, WE., Evanylo, GK., Zhang, X, Strickland, MS., Chim, BK., & Diatta, AA. (2020). The synergistic efects of humic substances and biofertilizers on plant development. International Journal of Plant & Soil Science, 32(7), 56-75. Lermen, C., da Cruz, R.M.S., de Souza, J.S., de Almeida Marchi, B., & Alberton, O. (2017). Growth of Lippia alba (Mill.) NE Brown inoculated with arbuscular mycorrhizal fungi with different levels of humic substances and phosphorus in the soil. Journal of applied research on medicinal and aromatic plants, 7, 48-53. Li, H.P., Han, Q.Q., Liu, Q.M., Gan, Y.N., Rensing, C., Rivera, W.L., Zhao, Q., & Zhang, J.L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 127375. Li, X., Zhi, Y., Jia, M., Wang, X., Tao, M., Wang, Z., & Xing, B. (2024). Properties and photosynthetic promotion mechanisms of artificial humic acid are feedstock-dependent. Carbon Research, 3(1), 4. Mackowiak, C.L., Grossl, P.R., & Bugbee, B.G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science, 65, 1744-1750. Mora,V., Baigorri, R., Bacaicoa, E., & Zamarreno, A. (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture causedby humicacid in cucumber. Environmental and Experimental Botany, 76, 24-32. Nahidan, S., Hashemi, S., & Zafari, D. (2019). Evaluation of phosphate solubilizing and potassium releasing ability of some Trichoderma species under in-vitro conditions. Iranian Journal of Soil and Water Research, 50(5), 1231-1242. (In Persion). Ohno, T., Griffin, T.S., Liebman, M., & Porter, G.A. (2005). Chemical characterization of soil phosphorus and organic matter in different cropping systems in Maine, USA. Agriculture Ecosystem Environment, 105, 625–634. Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. In Methods of soil analysis. Part 2, editd by. Page, A.L., Sparks, D.L., Helmke, P.A., & Loeppert, R.H. Madison WI: American Society of Agronomy. 403–30. Rathor, P., Upadhyay, P., Ullah, A., Gorim, L.Y., & Thilakarathna, M.S. (2024). Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AoB Plants, 16(2), plae018. Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., & Hosseini, H. M. (2019). Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 173, 504-513. Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and Plant Analysis Laboratory Manual. Center for Agricultural Research in the Dryland Areas (ICARDA), Aleppo, Syria. Rui-Xia, L., Feng C., Guan P., Qi-Rong, S., Rong, L., Wei., C. (2015). Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. Plose One, 25, 1-16. Sagar, R., Thippeshappa, G.N., Kadalli, G.G., & Dhananjaya, B.C. (2023). Phosphorus transformation in acid soil as influenced by humic substance. Phosphorus, Sulfur, and Silicon and the Related Elements, 198(12), 1029-1039. Vance, C.P., Uhde‐Stone, C., & Allan, D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. Journal of New phytologist, 157 (3), 423-447. Veysi, H., Heidari, G., & Sohrabi, Y. (2016). The effect of mycorrhizal fungi and humic acid on yield and yield components of sunflower. Journal of Agroecology, 8(4), 567-582. (In Persion). Wang, X.J., Wang, Z.Q., & Li, S.G. (1995). The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil Use and Management, 11(2), 99-102. Yang, X., Zhang, M., Li, J. & Yang, Z. (1985). Study on the effect of ammonium nitro-humus from several materials on fertilizer super phosphate. Application of Atomic Energy in Agriculture, 1, 45-50. Yedidia, I., Srivastva, A.K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235, 235-242. Zaidi, A., Khan, M.S., Ahemad, M., Oves, M., & Wani, P.A. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. Microbial Strategies for Crop Improvement. Springer, 23–50. | ||
آمار تعداد مشاهده مقاله: 46 تعداد دریافت فایل اصل مقاله: 45 |