
تعداد نشریات | 163 |
تعداد شمارهها | 6,714 |
تعداد مقالات | 72,518 |
تعداد مشاهده مقاله | 130,577,036 |
تعداد دریافت فایل اصل مقاله | 102,851,671 |
چالشهای اندازهگیری و برآورد فاکتور فرسایشپذیری خاک (K) مدل (R)USLE در مراتع مناطق خشک | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 2، اردیبهشت 1404، صفحه 351-371 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.386195.669845 | ||
نویسندگان | ||
ایوب آویژگان1؛ حسین اسدی* 2؛ محمود عرب خدری3؛ حمزه نور4؛ علی اکبر نظری سامانی5 | ||
1علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
2علوم و مهندسی خاک، دانشکده کشاورزی، داشگاه تهران، کرج، ایران | ||
3پژوهشکده حفاظت خاک و آبخیزداری ، سازمان تحقیقات، آموزش و ترویج کشاورزی ، تهران، ایران | ||
4مرکز تحقیقات و آموزش کشاورزی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، مشهد، ایران | ||
5گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
هدف از این تحقیق تعیین فاکتور فرسایشپذیری (K) معادله جهانی هدر رفت خاک (USLE) به روش مستقیم با بهرهگیری از کرتهای رواناب طبیعی () و مقایسه آن با روش غیرمستقیم برآوردی با نموگراف USLE () در مراتع مناطق خشک در پایگاه تحقیقات حفاظت خاک سنگانه واقع در شمالشرق ایران بود. دادههای هدر رفت خاک در 19 کرت با طول 20 و 25 متر، و شرایط مختلف از نظر خاک، شیب، پوشش گیاهی و سنگریزه سطحی تحت 20 رخداد بارندگی از سال 1379-1375 و 1388-1385 اندازهگیری شد. نتایج نشان داد شدت متوسط و حداکثر شدت 30 دقیقهای نسبت به شاخص فرسایندگی باران () همبستگی بیشتری با هدر رفت خاک داشتند. بر اساس نتایج حاصل شده، به ترتیب حداقل 12، 14 و 24 برابر بهدست آمده از دادههای هدر رفت خاک میانگین بلندمدت سالانه، سال با بیشترین سهم از کل هدر رفت خاک و شدیدترین رخداد () است. دلایل احتمالی اصلی برای این بیش برآوردی شدت کم رخدادهای فرساینده و عدم قطعیتهای مربوط به اندازهگیری هدر رفت خاک و دیگر فاکتورهای مدل USLE در مراتع خشک هستند. بنابراین، بر اساس بیشبرآوردی نموگراف USLE، تحقیقات بیشتری به ویژه با دوره آماری طولانیتر یا با استفاده از شبیهساز باران با شدت 63 میلیمتر بر ساعت در شرایط میدانی برای توسعه روابط مناسب برای برآورد فاکتور K در مراتع مناطق خشک مورد نیاز است. | ||
کلیدواژهها | ||
شدت بارندگی؛ کرت فرسایش؛ مدلسازی فرسایش؛ هدر رفت خاک | ||
مراجع | ||
Anache, J. A. A., Bacchi, C. G. V., Panachuki, E., & Sobrinho, T. A. (2015). Assessment of methods for predicting soil erodibility in soil loss modeling. Geosciences= Geociências, 34(1), 32-40. Arabkhedri, M. (2021). Water Erosion and Sediment Production Status in Iran: Statistical and Comparative Analyses. Strategic Research Journal of Agricultural Sciences and Natural Resources, 6(2), 139-156 (In Persian). doi:10.22047/srjasnr.2021.140574 (In Persian) Arabkhedri, M., Gerami, Z., shadfar, s., Bayat, R., Parvizi, Y., & Nabipay Lashkarian, S. (2020). Comparing the Performance of Several Erodibility Indices' Equations of USLE Model at Laboratory Condition. Iranian Journal of Soil and Water Research, 51(7), 1725-1736. doi:10.22059/ijswr.2020.299356.668539.(In Persian( Arabkhedri, M., & Noor, H. (2021). Experimental Erosion and Sediment Research (At Sanganeh Soil Conservation Research Site); Research, Education and Extension Opportunities. First edition. Tehran. Soil Conservation and Watershed Management Research Institute (In Persian). Asadi, H. (2022). A Critical Report on Several Decades’ Activities in the Universities, Research Institutes and Executive Organizations in the Field of Soil Erosion and Conservation in Iran. Iranian Journal of Soil and Water Research, 53(2), 411-433. doi:10.22059/ijswr.2022.337663.669190 (In Persian) Asadi, H., Honarmand, M., Vazifedoust, M., & Moussavi, A. (2017). Assessment of changes in soil erosion risk using RUSLE in Navrood Watershed, Iran. Journal of Agricultural Science and Technology, 19(1), 231-244. Auerswald, K., Fiener, P., Martin, W., & Elhaus, D. (2016). Corrigendum to “Use and misuse of the K factor equation in soil erosion modeling”[Catena 118 (2014) 220–225]. Catena, 100(139), 271. Bagarello, V., Ferro, V., & Pampalone, V. (2022). Measuring the USLE soil erodibility factor in the unit plots of Sparacia (southern Italy) experimental area. Paper presented at the 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). Bonham, C. D. (2013). Measurements for terrestrial vegetation: John Wiley & Sons. Brown, L., & Foster, G. (1987). Storm erosivity using idealized intensity distributions. Transactions of the ASAE, 30(2), 379-0386. Bryan, R. B. (2000). Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32(3-4), 385-415. Cassol, E. A., Silva, T. S. d., Eltz, F. L. F., & Levien, R. (2018). Soil erodibility under natural rainfall conditions as the K factor of the universal soil loss equation and application of the nomograph for a subtropical Ultisol. Revista Brasileira de Ciência do Solo, 42, e0170262. Chan, K., & Heenan, D. (1999). Lime‐induced loss of soil organic carbon and effect on aggregate stability. Soil Science Society of America Journal, 63(6), 1841-1844. Corral-Pazos-de-Provens, E., Rapp-Arrarás, Í., & Domingo-Santos, J. M. (2023). The USLE soil erodibility nomograph revisited. International soil and water conservation research, 11(1), 1-13. De Baets, S., Poesen, J., Gyssels, G., & Knapen, A. (2006). Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 76(1-2), 54-67. Eftekhari, A., Arzani, H., Mehrabi, A., Jafari, M., Bihamta, M. R., & Zandi Esfahan, E. (2012). Investigation on effects of range management plans, property size and pastoralist population on rangeland characteristics (case study: Zarandyeh rangelands). World Applied Sciences Journal, 18(10), 1381-1388. Efthimiou, N. (2020). The new assessment of soil erodibility in Greece. Soil and Tillage Research, 204, 104720. Erosion, W. o. E., & Rangelands, S. Y. o. (1982). Proceedings of the Workshop on Estimating Erosion and Sediment Yield on Rangelands: Tucson, Arizona, March 7-9, 1981. In: ARS. Fallah, M., Bahrami, H., & Asadi, H. (2023). Assessment of soil erosion risk using RUSLE model, SATEEC system, remote sensing, and GIS techniques: a case study of Navroud watershed. Environmental Earth Sciences, 82(17), 398. Ferreira, V., Panagopoulos, T., Andrade, R., Guerrero, C., & Loures, L. (2015). Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth, 6(2), 383-392. Foster, G. R. (2005). Draft: Science Documentation. Revised Universal Soil Loss Equation version 2 (RUSLE2)USDA-Agricultural Research Service, Washington, D.C. Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of soil analysis. Part, 4(598), 255-293. Getahun, G. T., Etana, A., Munkholm, L. J., & Kirchmann, H. (2021). Liming with CaCO3 or CaO affects aggregate stability and dissolved reactive phosphorus in a heavy clay subsoil. Soil and Tillage Research, 214, 105162. Ghidey, F., & E. Alberts, E. (1997). PLANT ROOT EFFECTS ON SOIL ERODIBILITY, SPLASH DETACHMENT, SOIL STRENGTH, AND AGGREGATE STABILITY. Transactions of the ASAE, 40(1), 129-135. doi:https://doi.org/10.13031/2013.21257 Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220-228. Katuwal, S., Vermang, J., Cornelis, W. M., Gabriels, D., Moldrup, P., & de Jonge, L. W. (2013). Effect of Root Density on Erosion and Erodibility of a Loamy Soil Under Simulated Rain. Soil Science, 178(1), 29-36. doi:10.1097/SS.0b013e318285b052 Khaleghpanah, N., Asadi, H., Shorafa, M., Gorji, M., & Davari, M. (2018). WEPP model efficiency in estimation of runoff and soil loss in stony rangelands of Khamesan watershed, Kurdistan. Iranian Journal of Soil and Water Research, 48(5), 1031-1042. doi:10.22059/ijswr.2017.212045.667504 (In Persian) Khaleghpanah, N., Shorafa, M., Asadi, H., Gorji, M., & Davari, M. (2016). Modeling soil loss at plot scale with EUROSEM and RUSLE2 at stony soils of Khamesan watershed, Iran. Catena, 147, 773-788. Khormai, H., Kiani, F., & Khormali, F. (2017). Evaluation of Soil Erodibility Factor (k) forLoess Derived Landforms of Kechik Watershedin Golestan Province. Water and Soil, 30(6), 2078-2086. doi:10.22067/jsw.v30i6.57027 Kinnell, P. (2015). Accounting for the influence of runoff on event soil erodibilities associated with the EI30 index in RUSLE2. Hydrological processes, 29(6), 1397-1405. Mamo, M., & D. Bubenzer, G. (2001). DETACHMENT RATE, SOIL ERODIBILITY, AND SOIL STRENGTH AS INFLUENCED BY LIVING PLANT ROOTS PART I: LABORATORY STUDY. Transactions of the ASAE, 44(5), 1167. doi:https://doi.org/10.13031/2013.6445 Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research, 8(1), 1-10. McCool, D., Foster, G., & Weesies, G. (1997). Chapter 4. Slope length and steepness factors (LS). KG Renard, GR Foster, GA Weesies, DK McCool and DC Yoder (compilers), Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agricultural Handbook(703), 101-141. Ola, A., Dodd, I. C., & Quinton, J. N. (2015). Can we manipulate root system architecture to control soil erosion? SOIL, 1(2), 603-612. doi:10.5194/soil-1-603-2015 Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.-A., Abbasi, M., Dematte, J. A. M., Arthur, E., & Panagos, P. (2018). Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314, 102-112. Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.-A., Naderi, M., Dematte, J. A. M., & Kerry, R. (2016). Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology, 273, 385-395. Raj, R., Saharia, M., & Chakma, S. (2023). Mapping soil erodibility over India. Catena, 230, 107271. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE): US Department of Agriculture, Agricultural Research Service, Agriculture Handbook No. 703, 404 pp. Reynolds, W., Drury, C., Tan, C., Fox, C., & Yang, X. (2009). Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3-4), 252-263. Römkens, M., Young, R., Poesen, J., McCool, D., El-Swaify, S., & Bradford, J. (1997). Soil erodibility factor (K). Compilers) In: Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC, editors. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC, USA: Agric. HB(703), 65-99. Sanchis, M. S., Torri, D., Borselli, L., & Poesen, J. (2008). Climate effects on soil erodibility. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(7), 1082-1097. Sharpley, A., & Williams, J. (1990). EPIC--Erosion/Productivity Impact Calculator: 1. Model Documentation. U.S. Department of Agriculture Technical Bulletin. No. 1768, 235 pp. Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14): John Wiley & Sons. Torri, D., Poesen, J., & Borselli, L. (1997). Predictability and uncertainty of the soil erodibility factor using a global dataset. Catena, 31(1-2), 1-22. Vaezi, A., Bahrami, H., Sadeghi, S., & Mahdian, M. (2010). Spatial variability of soil erodibility factor (K) of the USLE in North West of Iran. Journal of Agricultural Science and Technology, 12(2), 241-252. Vaezi, A., Sadeghi, S., Bahrami, H., & Mahdian, M. (2008). Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology, 97(3-4), 414-423. Vaezi, A., Sadeghi, S., Bahrami, H., & Mahdian, M. (2012). Estimation of erodibility factor (K) using the RUSLE model in some soils of the semi-arid regions in northwest of Iran. Journal of Water and Soil Conservation, 17(3), 105-124 (In Persian). Vaezi, A. R., & Noghan, M. (2021). Evaluating the Efficiency of the USLE, RUSLE, USLE-M and AUSLE Models in Estimation of Soil Loss at Plot Scale in a Semi-Arid Region. Iranian Journal of Watershed Management Science and Engineering, 14(50), 1-10 (In Persian). Wilcox, B. P., Breshears, D. D., & Allen, C. D. (2003). Ecohydrology of a resource‐conserving semiarid woodland: Effects of scale and disturbance. Ecological monographs, 73(2), 223-239. Williams, J., Renard, K., & Dyke, P. (1983). EPIC: A new method for assessing erosion's effect on soil productivity. Journal of soil and water conservation, 38(5), 381-383. Wischmeier, & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning: Department of Agriculture, Science and Education Administration. Wischmeier, W. H., Johnson, C., & Cross, B. (1971). A soil erodibility nomograph for farmland and construction sites. Yair, A., & Raz-Yassif, N. (2004). Hydrological processes in a small arid catchment: scale effects of rainfall and slope length. Geomorphology, 61(1-2), 155-169. Zhang, K., Lian, L., & Zhang, Z. (2016). Reliability of soil erodibility estimation in areas outside the US: a comparison of erodibility for main agricultural soils in the US and China. Environmental Earth Sciences, 75, 1-10. Zhao, W., Wei, H., Jia, L., Daryanto, S., Zhang, X., & Liu, Y. (2018). Soil erodibility and its influencing factors on the Loess Plateau of China: a case study in the Ansai watershed. Solid Earth, 9(6), 1507-1516. | ||
آمار تعداد مشاهده مقاله: 62 تعداد دریافت فایل اصل مقاله: 46 |